summaryrefslogtreecommitdiff
path: root/runtime/prims.scm
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/prims.scm')
-rw-r--r--runtime/prims.scm595
1 files changed, 595 insertions, 0 deletions
diff --git a/runtime/prims.scm b/runtime/prims.scm
new file mode 100644
index 0000000..797f21b
--- /dev/null
+++ b/runtime/prims.scm
@@ -0,0 +1,595 @@
+;;; prims.scm -- definitions for primitives
+;;;
+;;; author : Sandra Loosemore
+;;; date : 9 Jun 1992
+;;;
+;;; WARNING!!! This file contains Common-Lisp specific code.
+;;;
+
+
+;;; Helper stuff
+
+(define-integrable (is-fixnum? x)
+ (lisp:typep x 'lisp:fixnum))
+
+(define-integrable (is-integer? x)
+ (lisp:typep x 'lisp:integer))
+
+(define-integrable (is-single-float? x)
+ (lisp:typep x 'lisp:single-float))
+
+(define-integrable (is-double-float? x)
+ (lisp:typep x 'lisp:double-float))
+
+(define-syntax (the-fixnum x)
+ `(lisp:the lisp:fixnum ,x))
+
+(define-syntax (the-integer x)
+ `(lisp:the lisp:integer ,x))
+
+(define-syntax (the-single-float x)
+ `(lisp:the lisp:single-float ,x))
+
+(define-syntax (the-double-float x)
+ `(lisp:the lisp:double-float ,x))
+
+(define-syntax (make-haskell-tuple2 x y)
+ `(make-tuple (box ,x) (box ,y)))
+
+;;; Abort
+;;; *** Should probably do something other than just signal an error.
+
+(define (prim.abort s)
+ (haskell-runtime-error s))
+
+(define (haskell-string->list s)
+ (if (null? s)
+ '()
+ (cons (integer->char (force (car s)))
+ (haskell-string->list (force (cdr s))))))
+
+;;; Char
+
+(define-syntax (prim.char-to-int c)
+ `(the-fixnum ,c))
+
+(define-syntax (prim.int-to-char i)
+ `(the-fixnum ,i))
+
+(define-syntax (prim.eq-char i1 i2)
+ `(= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-eq-char i1 i2)
+ `(not (= (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.le-char i1 i2)
+ `(<= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-le-char i1 i2)
+ `(> (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-lt-char i1 i2)
+ `(>= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.lt-char i1 i2)
+ `(< (the-fixnum ,i1) (the-fixnum ,i2)))
+
+(define-integrable prim.max-char 255)
+
+
+;;; Floating
+
+(define-syntax (prim.eq-float f1 f2)
+ `(= (the-single-float ,f1) (the-single-float ,f2)))
+(define-syntax (prim.not-eq-float f1 f2)
+ `(not (= (the-single-float ,f1) (the-single-float ,f2))))
+(define-syntax (prim.le-float f1 f2)
+ `(<= (the-single-float ,f1) (the-single-float ,f2)))
+(define-syntax (prim.not-le-float f1 f2)
+ `(> (the-single-float ,f1) (the-single-float ,f2)))
+(define-syntax (prim.not-lt-float f1 f2)
+ `(>= (the-single-float ,f1) (the-single-float ,f2)))
+(define-syntax (prim.lt-float f1 f2)
+ `(< (the-single-float ,f1) (the-single-float ,f2)))
+
+(define-syntax (prim.eq-double f1 f2)
+ `(= (the-double-float ,f1) (the-double-float ,f2)))
+(define-syntax (prim.not-eq-double f1 f2)
+ `(not (= (the-double-float ,f1) (the-double-float ,f2))))
+(define-syntax (prim.le-double f1 f2)
+ `(<= (the-double-float ,f1) (the-double-float ,f2)))
+(define-syntax (prim.not-le-double f1 f2)
+ `(> (the-double-float ,f1) (the-double-float ,f2)))
+(define-syntax (prim.not-lt-double f1 f2)
+ `(>= (the-double-float ,f1) (the-double-float ,f2)))
+(define-syntax (prim.lt-double f1 f2)
+ `(< (the-double-float ,f1) (the-double-float ,f2)))
+
+(define-syntax (prim.float-max f1 f2)
+ `(the-single-float (max (the-single-float ,f1) (the-single-float ,f2))))
+(define-syntax (prim.float-min f1 f2)
+ `(the-single-float (min (the-single-float ,f1) (the-single-float ,f2))))
+
+(define-syntax (prim.double-max f1 f2)
+ `(the-double-float (max (the-double-float ,f1) (the-double-float ,f2))))
+(define-syntax (prim.double-min f1 f2)
+ `(the-double-float (min (the-double-float ,f1) (the-double-float ,f2))))
+
+(define-syntax (prim.plus-float f1 f2)
+ `(the-single-float (+ (the-single-float ,f1) (the-single-float ,f2))))
+(define-syntax (prim.minus-float f1 f2)
+ `(the-single-float (- (the-single-float ,f1) (the-single-float ,f2))))
+(define-syntax (prim.mul-float f1 f2)
+ `(the-single-float (* (the-single-float ,f1) (the-single-float ,f2))))
+(define-syntax (prim.div-float f1 f2)
+ `(the-single-float (/ (the-single-float ,f1) (the-single-float ,f2))))
+
+(define-syntax (prim.plus-double f1 f2)
+ `(the-double-float (+ (the-double-float ,f1) (the-double-float ,f2))))
+(define-syntax (prim.minus-double f1 f2)
+ `(the-double-float (- (the-double-float ,f1) (the-double-float ,f2))))
+(define-syntax (prim.mul-double f1 f2)
+ `(the-double-float (* (the-double-float ,f1) (the-double-float ,f2))))
+(define-syntax (prim.div-double f1 f2)
+ `(the-double-float (/ (the-double-float ,f1) (the-double-float ,f2))))
+
+
+(define-syntax (prim.neg-float f)
+ `(the-single-float (- (the-single-float ,f))))
+
+(define-syntax (prim.neg-double f)
+ `(the-double-float (- (the-double-float ,f))))
+
+(define-syntax (prim.abs-float f)
+ `(the-single-float (lisp:abs (the-single-float ,f))))
+
+(define-syntax (prim.abs-double f)
+ `(the-double-float (lisp:abs (the-double-float ,f))))
+
+
+(define-syntax (prim.exp-float f)
+ `(the-single-float (lisp:exp (the-single-float ,f))))
+(define-syntax (prim.log-float f)
+ `(the-single-float (lisp:log (the-single-float ,f))))
+(define-syntax (prim.sqrt-float f)
+ `(the-single-float (lisp:sqrt (the-single-float ,f))))
+(define-syntax (prim.sin-float f)
+ `(the-single-float (lisp:sin (the-single-float ,f))))
+(define-syntax (prim.cos-float f)
+ `(the-single-float (lisp:cos (the-single-float ,f))))
+(define-syntax (prim.tan-float f)
+ `(the-single-float (lisp:tan (the-single-float ,f))))
+(define-syntax (prim.asin-float f)
+ `(the-single-float (lisp:asin (the-single-float ,f))))
+(define-syntax (prim.acos-float f)
+ `(the-single-float (lisp:acos (the-single-float ,f))))
+(define-syntax (prim.atan-float f)
+ `(the-single-float (lisp:atan (the-single-float ,f))))
+(define-syntax (prim.sinh-float f)
+ `(the-single-float (lisp:sinh (the-single-float ,f))))
+(define-syntax (prim.cosh-float f)
+ `(the-single-float (lisp:cosh (the-single-float ,f))))
+(define-syntax (prim.tanh-float f)
+ `(the-single-float (lisp:tanh (the-single-float ,f))))
+(define-syntax (prim.asinh-float f)
+ `(the-single-float (lisp:asinh (the-single-float ,f))))
+(define-syntax (prim.acosh-float f)
+ `(the-single-float (lisp:acosh (the-single-float ,f))))
+(define-syntax (prim.atanh-float f)
+ `(the-single-float (lisp:atanh (the-single-float ,f))))
+
+
+(define-syntax (prim.exp-double f)
+ `(the-double-float (lisp:exp (the-double-float ,f))))
+(define-syntax (prim.log-double f)
+ `(the-double-float (lisp:log (the-double-float ,f))))
+(define-syntax (prim.sqrt-double f)
+ `(the-double-float (lisp:sqrt (the-double-float ,f))))
+(define-syntax (prim.sin-double f)
+ `(the-double-float (lisp:sin (the-double-float ,f))))
+(define-syntax (prim.cos-double f)
+ `(the-double-float (lisp:cos (the-double-float ,f))))
+(define-syntax (prim.tan-double f)
+ `(the-double-float (lisp:tan (the-double-float ,f))))
+(define-syntax (prim.asin-double f)
+ `(the-double-float (lisp:asin (the-double-float ,f))))
+(define-syntax (prim.acos-double f)
+ `(the-double-float (lisp:acos (the-double-float ,f))))
+(define-syntax (prim.atan-double f)
+ `(the-double-float (lisp:atan (the-double-float ,f))))
+(define-syntax (prim.sinh-double f)
+ `(the-double-float (lisp:sinh (the-double-float ,f))))
+(define-syntax (prim.cosh-double f)
+ `(the-double-float (lisp:cosh (the-double-float ,f))))
+(define-syntax (prim.tanh-double f)
+ `(the-double-float (lisp:tanh (the-double-float ,f))))
+(define-syntax (prim.asinh-double f)
+ `(the-double-float (lisp:asinh (the-double-float ,f))))
+(define-syntax (prim.acosh-double f)
+ `(the-double-float (lisp:acosh (the-double-float ,f))))
+(define-syntax (prim.atanh-double f)
+ `(the-double-float (lisp:atanh (the-double-float ,f))))
+
+
+(define-integrable prim.pi-float (lisp:coerce lisp:pi 'lisp:single-float))
+
+(define-integrable prim.pi-double (lisp:coerce lisp:pi 'lisp:double-float))
+
+
+;;; Assumes rationals are represented as a 2-tuple of integers
+
+(define (prim.rational-to-float x)
+ (let ((n (tuple-select 2 0 x))
+ (d (tuple-select 2 1 x)))
+ (if (eqv? d 0)
+ (haskell-runtime-error "Divide by 0.")
+ (prim.rational-to-float-aux n d))))
+
+(define (prim.rational-to-float-aux n d)
+ (declare (type integer n d))
+ (/ (lisp:coerce n 'lisp:single-float)
+ (lisp:coerce d 'lisp:single-float)))
+
+(define (prim.rational-to-double x)
+ (let ((n (tuple-select 2 0 x))
+ (d (tuple-select 2 1 x)))
+ (if (eqv? d 0)
+ (haskell-runtime-error "Divide by 0.")
+ (prim.rational-to-double-aux n d))))
+
+(define (prim.rational-to-double-aux n d)
+ (declare (type integer n d))
+ (/ (lisp:coerce n 'lisp:double-float)
+ (lisp:coerce d 'lisp:double-float)))
+
+(define (prim.float-to-rational x)
+ (let ((r (lisp:rational (the lisp:single-float x))))
+ (declare (type rational r))
+ (make-tuple (lisp:numerator r) (lisp:denominator r))))
+
+(define (prim.double-to-rational x)
+ (let ((r (lisp:rational (the lisp:double-float x))))
+ (declare (type rational r))
+ (make-tuple (lisp:numerator r) (lisp:denominator r))))
+
+
+(define-integrable prim.float-1 (lisp:coerce 1.0 'lisp:single-float))
+(define-integrable prim.double-1 (lisp:coerce 1.0 'lisp:double-float))
+
+(define-integrable prim.float-digits
+ (lisp:float-digits prim.float-1))
+
+(define-integrable prim.double-digits
+ (lisp:float-digits prim.double-1))
+
+(define-integrable prim.float-radix
+ (lisp:float-radix prim.float-1))
+
+(define-integrable prim.double-radix
+ (lisp:float-radix prim.double-1))
+
+
+;;; Sometimes least-positive-xxx-float is denormalized.
+
+(define-integrable prim.float-min-exp
+ (multiple-value-bind (m e)
+ (lisp:decode-float
+ #+lucid lcl:least-positive-normalized-single-float
+ #-lucid lisp:least-positive-single-float)
+ (declare (ignore m))
+ e))
+
+(define-integrable prim.double-min-exp
+ (multiple-value-bind (m e)
+ (lisp:decode-float
+ #+lucid lcl:least-positive-normalized-double-float
+ #-lucid lisp:least-positive-double-float)
+ (declare (ignore m))
+ e))
+
+(define-integrable prim.float-max-exp
+ (multiple-value-bind (m e)
+ (lisp:decode-float lisp:most-positive-single-float)
+ (declare (ignore m))
+ e))
+
+(define-integrable prim.double-max-exp
+ (multiple-value-bind (m e)
+ (lisp:decode-float lisp:most-positive-double-float)
+ (declare (ignore m))
+ e))
+
+(define-integrable (prim.float-range x)
+ (declare (ignore x))
+ (make-haskell-tuple2 prim.float-min-exp prim.float-max-exp))
+
+(define-integrable (prim.double-range x)
+ (declare (ignore x))
+ (make-haskell-tuple2 prim.double-min-exp prim.double-max-exp))
+
+
+;;; *** I'm not sure if these are correct. Should the exponent value
+;;; *** be taken as the value that lisp:integer-decode-float returns,
+;;; *** or as the value that lisp:decode-float returns? (They're
+;;; *** not the same because the significand is scaled differently.)
+;;; *** I'm guessing that Haskell's model is to use the actual numbers
+;;; *** that are in the bit fields
+
+;;; jcp - I removed this since Haskell requires an integer instead of a
+;;; fractional mantissa. My theory is that integer-decode-float returns
+;;; what Haskell wants without fiddling (except sign reattachment)
+
+(define (exponent-adjustment m)
+ (if (eqv? prim.float-radix 2)
+ ;; the usual case -- e.g. IEEE floating point
+ (lisp:integer-length m)
+ (lisp:ceiling (lisp:log m prim.float-radix))))
+
+(define (prim.decode-float f)
+ (multiple-value-bind (m e s)
+ (lisp:integer-decode-float (the-single-float f))
+ (make-haskell-tuple2 (* (the-integer m) (the-fixnum s))
+ (the-fixnum e))))
+
+(define (prim.decode-double f)
+ (multiple-value-bind (m e s)
+ (lisp:integer-decode-float (the-double-float f))
+ (make-haskell-tuple2 (* (the-integer m) (the-fixnum s))
+ (the-fixnum e))))
+
+(define (prim.encode-float m e)
+ (lisp:scale-float (lisp:coerce m 'lisp:single-float) (the-fixnum e)))
+
+(define (prim.encode-double m e)
+ (lisp:scale-float (lisp:coerce m 'lisp:double-float) (the-fixnum e)))
+
+
+;;; Integral
+
+(define-syntax (prim.eq-int i1 i2)
+ `(= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-eq-int i1 i2)
+ `(not (= (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.le-int i1 i2)
+ `(<= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-le-int i1 i2)
+ `(> (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.not-lt-int i1 i2)
+ `(>= (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.lt-int i1 i2)
+ `(< (the-fixnum ,i1) (the-fixnum ,i2)))
+(define-syntax (prim.int-max i1 i2)
+ `(the-fixnum (max (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.int-min i1 i2)
+ `(the-fixnum (min (the-fixnum ,i1) (the-fixnum ,i2))))
+
+(define-syntax (prim.eq-integer i1 i2)
+ `(= (the-integer ,i1) (the-integer ,i2)))
+(define-syntax (prim.not-eq-integer i1 i2)
+ `(not (= (the-integer ,i1) (the-integer ,i2))))
+(define-syntax (prim.le-integer i1 i2)
+ `(<= (the-integer ,i1) (the-integer ,i2)))
+(define-syntax (prim.not-le-integer i1 i2)
+ `(> (the-integer ,i1) (the-integer ,i2)))
+(define-syntax (prim.not-lt-integer i1 i2)
+ `(>= (the-integer ,i1) (the-integer ,i2)))
+(define-syntax (prim.lt-integer i1 i2)
+ `(< (the-integer ,i1) (the-integer ,i2)))
+(define-syntax (prim.integer-max i1 i2)
+ `(the-integer (max (the-integer ,i1) (the-integer ,i2))))
+(define-syntax (prim.integer-min i1 i2)
+ `(the-integer (min (the-integer ,i1) (the-integer ,i2))))
+
+
+(define-syntax (prim.plus-int i1 i2)
+ `(the-fixnum (+ (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.minus-int i1 i2)
+ `(the-fixnum (- (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.mul-int i1 i2)
+ `(the-fixnum (* (the-fixnum ,i1) (the-fixnum ,i2))))
+(define-syntax (prim.neg-int i)
+ `(the-fixnum (- (the-fixnum ,i))))
+(define-syntax (prim.abs-int i)
+ `(the-fixnum (lisp:abs (the-fixnum ,i))))
+
+(define-integrable prim.minint lisp:most-negative-fixnum)
+(define-integrable prim.maxint lisp:most-positive-fixnum)
+
+(define-syntax (prim.plus-integer i1 i2)
+ `(the-integer (+ (the-integer ,i1) (the-integer ,i2))))
+(define-syntax (prim.minus-integer i1 i2)
+ `(the-integer (- (the-integer ,i1) (the-integer ,i2))))
+(define-syntax (prim.mul-integer i1 i2)
+ `(the-integer (* (the-integer ,i1) (the-integer ,i2))))
+(define-syntax (prim.neg-integer i)
+ `(the-integer (- (the-integer ,i))))
+(define-syntax (prim.abs-integer i)
+ `(the-integer (lisp:abs (the-integer ,i))))
+
+
+(define (prim.div-rem-int i1 i2)
+ (multiple-value-bind (q r)
+ (lisp:truncate (the-fixnum i1) (the-fixnum i2))
+ (make-tuple (box (the-fixnum q)) (box (the-fixnum r)))))
+
+(define (prim.div-rem-integer i1 i2)
+ (multiple-value-bind (q r)
+ (lisp:truncate (the-integer i1) (the-integer i2))
+ (make-tuple (box (the-integer q)) (box (the-integer r)))))
+
+(define (prim.integer-to-int i)
+ (if (is-fixnum? i)
+ (the-fixnum i)
+ (haskell-runtime-error "Integer -> Int overflow.")))
+
+(define-syntax (prim.int-to-integer i)
+ i)
+
+;;; Binary
+
+(define prim.nullbin '())
+
+(define (prim.is-null-bin x)
+ (null? x))
+
+(define (prim.show-bin-int i b)
+ (cons i b))
+
+(define (prim.show-bin-integer i b)
+ (cons i b))
+
+(define (prim.show-bin-float f b)
+ (cons f b))
+
+(define (prim.show-bin-double f b)
+ (cons f b))
+
+(define (prim.bin-read-error)
+ (haskell-runtime-error "Error: attempt to read from an incompatible Bin."))
+
+(define (prim.read-bin-int b)
+ (if (or (null? b) (not (is-fixnum? (car b))))
+ (prim.bin-read-error)
+ (make-haskell-tuple2 (car b) (cdr b))))
+
+(define (prim.read-bin-integer b)
+ (if (or (null? b) (not (is-integer? (car b))))
+ (prim.bin-read-error)
+ (make-haskell-tuple2 (car b) (cdr b))))
+
+(define (prim.read-bin-float b)
+ (if (or (null? b) (not (is-single-float? (car b))))
+ (prim.bin-read-error)
+ (make-haskell-tuple2 (car b) (cdr b))))
+
+(define (prim.read-bin-double b)
+ (if (or (null? b) (not (is-double-float? (car b))))
+ (prim.bin-read-error)
+ (make-haskell-tuple2 (car b) (cdr b))))
+
+(define (prim.read-bin-small-int b m)
+ (if (or (null? b)
+ (not (is-fixnum? (car b)))
+ (> (the-fixnum (car b)) (the-fixnum m)))
+ (prim.bin-read-error)
+ (make-haskell-tuple2 (car b) (cdr b))))
+
+(define (prim.append-bin x y)
+ (append x y))
+
+
+;;; String primitives
+
+;;; Calls to prim.string-eq are generated by the CFN to pattern match
+;;; against string constants. So normally one of the arguments will be
+;;; a constant string. Treat this case specially to avoid consing up
+;;; a haskell string whenever it's called.
+;;; This function is strict in both its arguments.
+
+(define-syntax (prim.string-eq s1 s2)
+ (cond ((and (pair? s1)
+ (eq? (car s1) 'make-haskell-string))
+ `(prim.string-eq-inline ,(cadr s1) 0 ,(string-length (cadr s1)) ,s2))
+ ((and (pair? s2)
+ (eq? (car s2) 'make-haskell-string))
+ `(prim.string-eq-inline ,(cadr s2) 0 ,(string-length (cadr s2)) ,s1))
+ (else
+ `(prim.string-eq-notinline ,s1 ,s2))))
+
+(define (prim.string-eq-inline lisp-string i n haskell-string)
+ (declare (type fixnum i n))
+ (cond ((eqv? i n)
+ ;; Reached end of Lisp string constant -- better be at the end
+ ;; of the Haskell string, too.
+ (if (null? haskell-string) '#t '#f))
+ ((null? haskell-string)
+ ;; The Haskell string is too short.
+ '#f)
+ ((eqv? (the fixnum (char->integer (string-ref lisp-string i)))
+ (the fixnum (force (car haskell-string))))
+ ;; Next characters match, recurse
+ (prim.string-eq-inline
+ lisp-string (the fixnum (+ i 1)) n (force (cdr haskell-string))))
+ (else
+ ;; No match
+ '#f)))
+
+(define (prim.string-eq-notinline s1 s2)
+ (cond ((null? s1)
+ ;; Reached end of first string.
+ (if (null? s2) '#t '#f))
+ ((null? s2)
+ ;; Second string too short.
+ '#f)
+ ((eqv? (the fixnum (force (car s1))) (the fixnum (force (car s2))))
+ (prim.string-eq-notinline (force (cdr s1)) (force (cdr s2))))
+ (else
+ '#f)))
+
+
+;;; List primitives
+
+
+;;; The first argument is strict and the second is a delay.
+
+(define-syntax (prim.append l1 l2)
+ (cond ((and (pair? l1)
+ (eq? (car l1) 'make-haskell-string))
+ `(make-haskell-string-tail ,(cadr l1) ,l2))
+ ((equal? l1 ''())
+ `(force ,l2))
+ ((equal? l2 '(box '()))
+ l1)
+ ;; *** could also look for
+ ;; *** (append (cons x (box y)) z) => (cons x (box (append y z)))
+ ;; *** but I don't think this happens very often anyway
+ (else
+ `(prim.append-aux ,l1 ,l2))))
+
+(define (prim.append-aux l1 l2)
+ (cond ((null? l1)
+ (force l2))
+ ((and (forced? l2) (eq? (unbox l2) '()))
+ ;; Appending nil is identity.
+ l1)
+ ((forced? (cdr l1))
+ ;; Append eagerly if the tail of the first list argument has
+ ;; already been forced.
+ (cons (car l1)
+ (if (null? (unbox (cdr l1)))
+ l2 ; don't force this!!
+ (box (prim.append-aux (unbox (cdr l1)) l2)))))
+ (else
+ (cons (car l1) (delay (prim.append-aux (force (cdr l1)) l2))))
+ ))
+
+
+;;; Both arguments are forced here. Have to be careful not to call
+;;; recursively with an argument of 0.
+;;; *** This is no longer used.
+
+(define (prim.take n l)
+ (declare (type fixnum n))
+ (cond ((not (pair? l))
+ '())
+ ((eqv? n 1)
+ ;; Only one element to take.
+ (cons (car l) (box '())))
+ ((forced? (cdr l))
+ ;; Take eagerly if the tail of the list has already been forced.
+ (cons (car l) (box (prim.take (- n 1) (unbox (cdr l))))))
+ (else
+ (cons (car l) (delay (prim.take (- n 1) (force (cdr l))))))
+ ))
+
+
+;;; The optimizer gets rid of all first-order calls to these functions.
+
+(define (prim.foldr k z l)
+ ;; k and z are nonstrict, l is strict
+ (if (null? l)
+ (force z)
+ (funcall (force k)
+ (car l)
+ (delay (prim.foldr k z (force (cdr l)))))))
+
+(define (prim.build g)
+ ;; g is strict
+ (funcall g
+ (box (function make-cons-constructor))
+ (box '())))