1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
|
-- Standard list functions
-- build really shouldn't be exported, but what the heck.
-- some of the helper functions in this file shouldn't be
-- exported either!
module PreludeList (PreludeList.., foldr, build) where
import PreludePrims(build, foldr)
{-#Prelude#-} -- Indicates definitions of compiler prelude symbols
infixl 9 !!
infix 5 \\
infixr 5 ++
infix 4 `elem`, `notElem`
-- These are primitives used by the deforestation stuff in the optimizer.
-- the optimizer will turn references to foldr and build into
-- inlineFoldr and inlineBuild, respectively, but doesn't want to
-- necessarily inline all references immediately.
inlineFoldr :: (a -> b -> b) -> b -> [a] -> b
inlineFoldr f z l =
let foldr' [] = z
foldr' (x:xs) = f x (foldr' xs)
in foldr' l
{-# inlineFoldr :: Inline #-}
inlineBuild :: ((a -> [a] -> [a]) -> [b] -> [c]) -> [c]
inlineBuild g = g (:) []
{-# inlineBuild :: Inline #-}
-- head and tail extract the first element and remaining elements,
-- respectively, of a list, which must be non-empty. last and init
-- are the dual functions working from the end of a finite list,
-- rather than the beginning.
head :: [a] -> a
head (x:_) = x
head [] = error "head{PreludeList}: head []"
last :: [a] -> a
last [x] = x
last (_:xs) = last xs
last [] = error "last{PreludeList}: last []"
tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "tail{PreludeList}: tail []"
init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
init [] = error "init{PreludeList}: init []"
-- null determines if a list is empty.
null :: [a] -> Bool
null [] = True
null (_:_) = False
-- list concatenation (right-associative)
(++) :: [a] -> [a] -> [a]
xs ++ ys = build (\ c n -> foldr c (foldr c n ys) xs)
{-# (++) :: Inline #-}
-- the first occurrence of each element of ys in turn (if any)
-- has been removed from xs. Thus, (xs ++ ys) \\ xs == ys.
(\\) :: (Eq a) => [a] -> [a] -> [a]
(\\) = foldl del
where [] `del` _ = []
(x:xs) `del` y
| x == y = xs
| otherwise = x : xs `del` y
-- length returns the length of a finite list as an Int; it is an instance
-- of the more general genericLength, the result type of which may be
-- any kind of number.
genericLength :: (Num a) => [b] -> a
genericLength l = foldr (\ x n -> 1 + n) 0 l
--genericLength [] = 0
--genericLength (x:xs) = 1 + genericLength xs
{-# genericLength :: Inline #-}
length :: [a] -> Int
length l = foldr (\ x n -> 1 + n) 0 l
--length [] = 0
--length (x:xs) = 1 + length xs
{-# length :: Inline #-}
-- List index (subscript) operator, 0-origin
(!!) :: (Integral a) => [b] -> a -> b
l !! i = nth l (fromIntegral i)
{-# (!!) :: Inline #-}
nth :: [b] -> Int -> b
nth l m = let f x g 0 = x
f x g i = g (i - 1)
fail _ = error "(!!){PreludeList}: index too large"
in foldr f fail l m
{-# nth :: Inline #-}
--nth _ n | n < 0 = error "(!!){PreludeList}: negative index"
--nth [] n = error "(!!){PreludeList}: index too large"
--nth (x:xs) n
-- | n == 0 = x
-- | otherwise = nth xs (n - 1)
--{-# nth :: Strictness("S,S") #-}
-- map f xs applies f to each element of xs; i.e., map f xs == [f x | x <- xs].
map :: (a -> b) -> [a] -> [b]
map f xs = build (\ c n -> foldr (\ a b -> c (f a) b) n xs)
--map f [] = []
--map f (x:xs) = f x : map f xs
{-# map :: Inline #-}
-- filter, applied to a predicate and a list, returns the list of those
-- elements that satisfy the predicate; i.e.,
-- filter p xs == [x | x <- xs, p x].
filter :: (a -> Bool) -> [a] -> [a]
filter f xs = build (\ c n ->
foldr (\ a b -> if f a then c a b else b)
n xs)
--filter p = foldr (\x xs -> if p x then x:xs else xs) []
{-# filter :: Inline #-}
-- partition takes a predicate and a list and returns a pair of lists:
-- those elements of the argument list that do and do not satisfy the
-- predicate, respectively; i.e.,
-- partition p xs == (filter p xs, filter (not . p) xs).
partition :: (a -> Bool) -> [a] -> ([a],[a])
partition p = foldr select ([],[])
where select x (ts,fs) | p x = (x:ts,fs)
| otherwise = (ts,x:fs)
{-# partition :: Inline #-}
-- foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a list, reduces the list using
-- the binary operator, from left to right:
-- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
-- foldl1 is a variant that has no starting value argument, and thus must
-- be applied to non-empty lists. scanl is similar to foldl, but returns
-- a list of successive reduced values from the left:
-- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
-- Note that last (scanl f z xs) == foldl f z xs.
-- scanl1 is similar, again without the starting element:
-- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z xs = foldr (\ b g a -> g (f a b)) id xs z
--foldl f z [] = z
--foldl f z (x:xs) = foldl f (f z x) xs
{-# foldl :: Inline #-}
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "foldl1{PreludeList}: empty list"
{-# foldl1 :: Inline #-}
scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of
[] -> []
x:xs -> scanl f (f q x) xs)
{-# scanl :: Inline #-}
scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = error "scanl1{PreludeList}: empty list"
{-# scanl1 :: Inline #-}
-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.
--foldr :: (a -> b -> b) -> b -> [a] -> b
--foldr f z [] = z
--foldr f z (x:xs) = f x (foldr f z xs)
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "foldr1{PreludeList}: empty list"
{-# foldr1 :: Inline #-}
-- I'm not sure the build/foldr expansion wins.
scanr :: (a -> b -> b) -> b -> [a] -> [b]
--scanr f q0 l = build (\ c n ->
-- let g x qs@(q:_) = c (f x q) qs
-- in foldr g (c q0 n) l)
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
where qs@(q:_) = scanr f q0 xs
{-# scanr :: Inline #-}
scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs
where qs@(q:_) = scanr1 f xs
scanr1 _ [] = error "scanr1{PreludeList}: empty list"
{-# scanr1 :: Inline #-}
-- iterate f x returns an infinite list of repeated applications of f to x:
-- iterate f x == [x, f x, f (f x), ...]
iterate :: (a -> a) -> a -> [a]
iterate f x = build (\ c n ->
let iterate' x' = c x' (iterate' (f x'))
in iterate' x)
--iterate f x = x : iterate f (f x)
{-# iterate :: Inline #-}
-- repeat x is an infinite list, with x the value of every element.
repeat :: a -> [a]
repeat x = build (\ c n -> let r = c x r in r)
--repeat x = xs where xs = x:xs
{-# repeat :: Inline #-}
-- cycle ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.
cycle :: [a] -> [a]
cycle xs = xs' where xs' = xs ++ xs'
-- take n, applied to a list xs, returns the prefix of xs of length n,
-- or xs itself if n > length xs. drop n xs returns the suffix of xs
-- after the first n elements, or [] if n > length xs. splitAt n xs
-- is equivalent to (take n xs, drop n xs).
take :: (Integral a) => a -> [b] -> [b]
take n l = takeInt (fromIntegral n) l
{-# take :: Inline #-}
takeInt :: Int -> [b] -> [b]
takeInt m l =
build (\ c n ->
let f x g i | i <= 0 = n
| otherwise = c x (g (i - 1))
in foldr f (\ _ -> n) l m)
--takeInt 0 _ = []
--takeInt _ [] = []
--takeInt n l | n > 0 = primTake n l
{-# takeInt :: Inline #-}
-- Writing drop and friends in terms of build/foldr seems to lose
-- way big since they cause an extra traversal of the list tail
-- (except when the calls are being deforested).
drop :: (Integral a) => a -> [b] -> [b]
drop n l = dropInt (fromIntegral n) l
{-# drop :: Inline #-}
{-# drop :: Strictness("S,S") #-}
dropInt :: Int -> [b] -> [b]
dropInt 0 xs = xs
dropInt _ [] = []
dropInt (n+1) (_:xs) = dropInt n xs
{-# dropInt :: Inline #-}
splitAt :: (Integral a) => a -> [b] -> ([b],[b])
splitAt n l = splitAtInt (fromIntegral n) l
{-# splitAt :: Inline #-}
splitAtInt :: Int -> [b] -> ([b],[b])
splitAtInt 0 xs = ([],xs)
splitAtInt _ [] = ([],[])
splitAtInt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAtInt n xs
{-# splitAtInt :: Inline #-}
-- takeWhile, applied to a predicate p and a list xs, returns the longest
-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
-- returns the remaining suffix. Span p xs is equivalent to
-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p l = build (\ c n -> foldr (\ a b -> if p a then c a b else n) n l)
--takeWhile p [] = []
--takeWhile p (x:xs)
-- | p x = x : takeWhile p xs
-- | otherwise = []
{-# takeWhile :: Inline #-}
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
| p x = dropWhile p xs'
| otherwise = xs
{-# dropWhile :: Inline #-}
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
| p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
break p = span (not . p)
{-# span :: Inline #-}
{-# break :: Inline #-}
-- lines breaks a string up into a list of strings at newline characters.
-- The resulting strings do not contain newlines. Similary, words
-- breaks a string up into a list of words, which were delimited by
-- white space. unlines and unwords are the inverse operations.
-- unlines joins lines with terminating newlines, and unwords joins
-- words with separating spaces.
lines :: String -> [String]
lines "" = []
lines s = let (l, s') = break (== '\n') s
in l : case s' of
[] -> []
(_:s'') -> lines s''
words :: String -> [String]
words s = case dropWhile isSpace s of
"" -> []
s' -> w : words s''
where (w, s'') = break isSpace s'
unlines :: [String] -> String
unlines = concat . map (++ "\n")
{-# unlines :: Inline #-}
unwords :: [String] -> String
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
-- nub (meaning "essence") removes duplicate elements from its list argument.
nub :: (Eq a) => [a] -> [a]
nub l = build (\ c n ->
let f x g [] = c x (g [x])
f x g xs = if elem x xs
then (g xs)
else c x (g (x:xs))
in foldr f (\ _ -> n) l [])
{-# nub :: Inline #-}
--nub [] = []
--nub (x:xs) = x : nub (filter (/= x) xs)
-- reverse xs returns the elements of xs in reverse order. xs must be finite.
reverse :: [a] -> [a]
reverse l = build (\ c n ->
let f x g tail = g (c x tail)
in foldr f id l n)
{-# reverse :: Inline #-}
--reverse x = reverse1 x [] where
-- reverse1 [] a = a
-- reverse1 (x:xs) a = reverse1 xs (x:a)
-- and returns the conjunction of a Boolean list. For the result to be
-- True, the list must be finite; False, however, results from a False
-- value at a finite index of a finite or infinite list. or is the
-- disjunctive dual of and.
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False
{-# and :: Inline #-}
{-# or :: Inline #-}
-- Applied to a predicate and a list, any determines if any element
-- of the list satisfies the predicate. Similarly, for all.
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
{-# any :: Inline #-}
{-# all :: Inline #-}
-- elem is the list membership predicate, usually written in infix form,
-- e.g., x `elem` xs. notElem is the negation.
elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x ys = foldr (\ y t -> (x == y) || t) False ys
--x `elem` [] = False
--x `elem` (y:ys) = x == y || x `elem` ys
{-# elem :: Inline #-}
notElem x y = not (x `elem` y)
-- sum and product compute the sum or product of a finite list of numbers.
sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1
{-# sum :: Inline #-}
{-# product :: Inline #-}
-- sums and products give a list of running sums or products from
-- a list of numbers. For example, sums [1,2,3] == [0,1,3,6].
sums, products :: (Num a) => [a] -> [a]
sums = scanl (+) 0
products = scanl (*) 1
-- maximum and minimum return the maximum or minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
maximum, minimum :: (Ord a) => [a] -> a
maximum = foldl1 max
minimum = foldl1 min
{-# maximum :: Inline #-}
{-# minimum :: Inline #-}
-- concat, applied to a list of lists, returns their flattened concatenation.
concat :: [[a]] -> [a]
concat xs = build (\ c n -> foldr (\ x y -> foldr c y x) n xs)
--concat [] = []
--concat (l:ls) = l ++ concat ls
{-# concat :: Inline #-}
-- transpose, applied to a list of lists, returns that list with the
-- "rows" and "columns" interchanged. The input need not be rectangular
-- (a list of equal-length lists) to be completely transposable, but can
-- be "triangular": Each successive component list must be not longer
-- than the previous one; any elements outside of the "triangular"
-- transposable region are lost. The input can be infinite in either
-- dimension or both.
transpose :: [[a]] -> [[a]]
transpose = foldr
(\xs xss -> zipWith (:) xs (xss ++ repeat []))
[]
{-# transpose :: Inline #-}
-- zip takes two lists and returns a list of corresponding pairs. If one
-- input list is short, excess elements of the longer list are discarded.
-- zip3 takes three lists and returns a list of triples, etc. Versions
-- of zip producing up to septuplets are defined here.
zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))
{-# zip :: Inline #-}
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (\a b c -> (a,b,c))
{-# zip3 :: Inline #-}
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (\a b c d -> (a,b,c,d))
{-# zip4 :: Inline #-}
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (\a b c d e -> (a,b,c,d,e))
{-# zip5 :: Inline #-}
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f]
-> [(a,b,c,d,e,f)]
zip6 = zipWith6 (\a b c d e f -> (a,b,c,d,e,f))
{-# zip6 :: Inline #-}
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]
-> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (\a b c d e f g -> (a,b,c,d,e,f,g))
{-# zip7 :: Inline #-}
-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
-- For example, zipWith (+) is applied to two lists to produce the list
-- of corresponding sums.
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z as bs =
build (\ c' n' ->
let f' a g' (b:bs) = c' (z a b) (g' bs)
f' a g' _ = n'
in foldr f' (\ _ -> n') as bs)
--zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
--zipWith _ _ _ = []
{-# zipWith :: Inline #-}
zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z as bs cs =
build (\ c' n' ->
let f' a g' (b:bs) (c:cs) = c' (z a b c) (g' bs cs)
f' a g' _ _ = n'
in foldr f' (\ _ _ -> n') as bs cs)
{-# zipWith3 :: Inline #-}
--zipWith3 z (a:as) (b:bs) (c:cs)
-- = z a b c : zipWith3 z as bs cs
--zipWith3 _ _ _ _ = []
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z as bs cs ds =
build (\ c' n' ->
let f' a g' (b:bs) (c:cs) (d:ds) = c' (z a b c d) (g' bs cs ds)
f' a g' _ _ _ = n'
in foldr f' (\ _ _ _ -> n') as bs cs ds)
{-# zipWith4 :: Inline #-}
--zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
-- = z a b c d : zipWith4 z as bs cs ds
--zipWith4 _ _ _ _ _ = []
zipWith5 :: (a->b->c->d->e->f)
-> [a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z as bs cs ds es=
build (\ c' n' ->
let f' a g' (b:bs) (c:cs) (d:ds) (e:es) =
c' (z a b c d e) (g' bs cs ds es)
f' a g' _ _ _ _ = n'
in foldr f' (\ _ _ _ _ -> n') as bs cs ds es)
{-# zipWith5 :: Inline #-}
--zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
-- = z a b c d e : zipWith5 z as bs cs ds es
--zipWith5 _ _ _ _ _ _ = []
zipWith6 :: (a->b->c->d->e->f->g)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z as bs cs ds es fs =
build (\ c' n' ->
let f' a g' (b:bs) (c:cs) (d:ds) (e:es) (f:fs) =
c' (z a b c d e f) (g' bs cs ds es fs)
f' a g' _ _ _ _ _ = n'
in foldr f' (\ _ _ _ _ _ -> n') as bs cs ds es fs)
{-# zipWith6 :: Inline #-}
--zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
-- = z a b c d e f : zipWith6 z as bs cs ds es fs
--zipWith6 _ _ _ _ _ _ _ = []
zipWith7 :: (a->b->c->d->e->f->g->h)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z as bs cs ds es fs gs =
build (\ c' n' ->
let f' a g' (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) =
c' (z a b c d e f g) (g' bs cs ds es fs gs)
f' a g' _ _ _ _ _ _ = n'
in foldr f' (\ _ _ _ _ _ _ -> n') as bs cs ds es fs gs)
{-# zipWith7 :: Inline #-}
--zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
-- = z a b c d e f g : zipWith7 z as bs cs ds es fs gs
--zipWith7 _ _ _ _ _ _ _ _ = []
-- unzip transforms a list of pairs into a pair of lists. As with zip,
-- a family of such functions up to septuplets is provided.
unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])
{-# unzip :: Inline #-}
unzip3 :: [(a,b,c)] -> ([a],[b],[c])
unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))
([],[],[])
{-# unzip3 :: Inline #-}
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
{-# unzip4 :: Inline #-}
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
{-# unzip5 :: Inline #-}
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
{-# unzip6 :: Inline #-}
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])
{-# unzip7 :: Inline #-}
|