summaryrefslogtreecommitdiff
path: root/modules/oop/pf-objects.scm~
blob: a8f120e63b464d0f9165e56bc62b789b70199626 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
(define-module (oop pf-objects)
  #:use-module (oop goops)
  #:use-module (ice-9 vlist)
  #:export (set ref make-pf <pf> call with copy fset fcall make-p put put!
                pcall pcall! get
                mk
                def-pf-class  mk-pf-class  make-pf-class
                def-p-class   mk-p-class   make-p-class
                def-pyf-class mk-pyf-class make-pyf-class
                def-py-class  mk-py-class  make-py-class

#|
Python object system is basically syntactic suger otop of a hashmap and one
this project is inspired by the python object system and what it measn when
one in stead of hasmaps use functional hashmaps. We use vhashes, but those have a drawback in that those are not thread safe. But it is a small effort to work
with assocs or tree like functional hashmaps in stead.

The hashmap works like an assoc e.g. we will define new values by 'consing' a
new binding on the list and when the assoc take up too much space it will be
reshaped and all extra bindings will be removed.

The datastructure is functional but the objects mutate. So one need to 
explicitly tell it to not update etc.
|#

(define-class <p> () h)
(define-class <pf> (<p>) size n)         ; the pf object consist of a functional
                                         ; hashmap it's size and number of live
                                         ; object
(define-class <py>  (<p>))
(define-class <pyf> (<pf>))

;; Make an empty pf object
(define (make-pf)
  (define r (make <pf>))
  (slot-set! r 'h vlist-null)
  (slot-set! r 'size 0)
  (slot-set! r 'n 0)
  r)

(define (make-p)
  (define r (make <p>))
  (slot-set! r 'h make-hash-table)
  r)

(define fail (cons 'fail '()))
(define-syntax-rule (mrefx x key l)
  (let ((h (slot-ref x 'h)))
    (define pair (vhash-assq key h))
    (define (end)
      (if (null? l)
          #f
          (car l)))
    (define (parents)
      (let ((pair (vhash-assq '__parents__ h)))
        (if (pair? pair)
            (let lp ((li (cdr pair)))
              (if (pair? li)
                  (let ((r (ref (car li) key fail)))
                    (if (eq? r fail)
                        (lp (cdr li))
                        r))
                  (end)))
            (end))))

    (if pair
        (cdr pair)
        (let ((cl (ref x '__class__)))
          (if cl
              (let ((r (ref cl key) fail))
                (if (eq? r fail)
                    (parents)
                    r))
              (parents))))))

(define-syntax-rule (mrefx- x key l)
  (let* ((h (slot-ref x 'h))
         (r (hash-ref x key fail)))
    (if (eq? r fail)
        (if (pair? l)
            (car l)
            #f)
        r))))

(define not-implemented (cons 'not 'implemeneted))

(define-syntax-rule (mrefx-py- x key l)
  (let ((f (mref- x '__ref__)))
    (if (or (not f) (eq? f not-implemented))
        (mref- x key l)
        (apply f x key l))))

(define-syntax-rule (mrefx-py x key l)
  (let ((f (mref x '__ref__)))
    (if (or (not f) (eq? f not-implemented))
        (mref    x key l)
        (apply f x key l))))

(define-syntax-rule (unx mrefx- mref-)
  (define-syntax-rule (mref- x key l)
    (let ((xx x))
      (let ((res (mrefx- xx key l)))
        (if (procedure? res)
            (lambda z
              (apply res xx z))
            res)))))

(unx mrefx-    mref-)
(unx mrefx     mref)
(unx mrefx-py  mref-py)
(unx mrefx-py- mref-py-)

(define-method (ref (x <pf> )  key . l) (mref     x key l))
(define-method (ref (x <p>  )  key . l) (mref-    x key l))
(define-method (ref (x <pyf>)  key . l) (mref-py  x key l))
(define-method (ref (x <py> )  key . l) (mref-py- x key l))



;; the reshape function that will create a fresh new pf object with less size
;; this is an expensive operation and will only be done when we now there is
;; a lot to gain essentially tho complexity is as in the number of set
(define (reshape x)
  (let ((h (slot-ref x 'h))
        (m (make-hash-table))
        (n 0))
    (define h2 (vhash-fold (lambda (k v s)
                             (if (hash-ref m k #f)
                                 s
                                 (begin
                                   (hash-set! m k #t)
                                   (set! n (+ n 1))
                                   (vhash-consq k v s))))
                           vlist-null
                           h))
    (slot-set! x 'h h2)
    (slot-set! x 'size n)
    (slot-set! x 'n    n)
    (values)))

;; on object x add a binding that key -> val
(define-syntax-rule (mset x key val)
  (let ((h (slot-ref x 'h))
        (s (slot-ref x 'size))
        (n (slot-ref x 'n)))
    (slot-set! x 'size (+ 1 s))
    (let ((r (vhash-assq key h)))
      (when (not r)
        (slot-set! x 'n (+ n 1)))
      (slot-set! x 'h (vhash-consq key val h))
      (when (> s (* 2 n))
        (reshape x))
      (values))))

(define-syntax-rule (mset-py x key val)
  (let ((f (mref-py x '__set__)))
    (if (or (eq? f not-implemented) (not f))
        (mset x key val)
        (f key val))))
        

(define-syntax-rule (mset- x key val)
  (let ((h (slot-ref x 'h)))
    (hash-set! h key val)))

(define-syntax-rule (mset-py- x key val)
  (let ((f (mref-py- x '__set__)))
    (if (or (eq? f not-implemented) (not f))
        (mset- x key val)
        (f key val))))

(define-method (set (x <pf>)  key val) (mset     x key val))
(define-method (set (x <p>)   key val) (mset-    x key val))
(define-method (set (x <pyf>) key val) (mset-py  x key val))
(define-method (set (x <py>)  key val) (mset-py- x key val))


;; mref will reference the value of the key in the object x, an extra default
;; parameter will tell what the fail object is else #f if fail
;; if there is no found binding in the object search the class and
;; the super classes for a binding


;; call a function as a value of key in x with the object otself as a first
;; parameter, this is pythonic object semantics
(define-syntax-rule (mk-call mcall mref)
  (define-syntax-rule (mcall x key l)
    (apply (mref y key '()) l)))

(mk-call mcall     mref)
(mk-call mcall-    mref-)
(mk-call mcall-py  mref-py)
(mk-call mcall-py- mref-py-)
  
(define-method (call (x <pf>)  key . l) (mcall     x key l))
(define-method (call (x <p>)   key . l) (mcall-    x key l))
(define-method (call (x <pyf>) key . l) (mcall-py  x key l))
(define-method (call (x <py>)  key . l) (mcall-py- x key l))


;; make a copy of a pf object
(define-syntax-rule (mcopy x)
  (let ((r (make <pf>)))
    (slot-set! r 'h (slot-ref x 'h))
    (slot-set! r 'size (slot-ref x 'size))
    (slot-set! r 'n (slot-ref x 'n))
    r))

(define-syntax-rule (mcopy- x)
  (let ((r (make-p))
        (h (slot-ref r 'h)))
    (hash-for-each (lambda (k v) (hash-set! h k v)) (slot-ref x 'h))
    r))

(define-method (copy (x <pf>)) (mcopy  x))
(define-method (copy (x <p> )) (mcopy- x))
  

;; with will execute thunk and restor x to it's initial state after it has
;; finished note that this is a cheap operatoin because we use a functional
;; datastructure
(define-syntax-rule (mwith x thunk)
  (let ((old (mcopy x)))
    (let ((r (thunk)))
      (slot-set! x 'h    (slot-ref old 'h))
      (slot-set! x 'size (slot-ref old 'size))    
      (slot-set! x 'n    (slot-ref old 'n))
      r)))

(define-syntax-rule (mwith- x thunk)
  (let ((old (mcopy- x)))
    (let ((r (thunk)))
      (slot-set! x 'h    (slot-ref old 'h))
      r)))



;; a functional set will return a new object with the added binding and keep
;; x untouched
(define-method (fset (x <pf>) key val)
  (let ((x (mcopy x)))
    (mset x key val)
    x))

(define-method (fset (x <p>) key val)
  (let ((x (mcopy- x)))
    (mset x key val)
    x))

;; a functional call will keep x untouched and return (values fknval newx)
;; e.g. we get both the value of the call and the new version of x with
;; perhaps new bindings added
(define-method (fcall (x <pf>) key . l)
  (let* ((y (mcopy x))
         (r (mcall y key l)))
    (if (eq? (slot-ref x 'h) (slot-ref y 'h))
        (values r x)
        (values r y))))

(define-method (fcall (x <p>) key . l)
  (let ((x (mcopy x)))
    (values (mcall- x key l)
            x)))

;; this shows how we can override addition in a pythonic way
(define-syntax-rule (mk-arith + +x __add__ __radd__)
  (begin
    (define-method (+ (x <p>) y)
      (call x '__add__ y))

    (define-method (+ x (y <p>))
      (call y '__radd__ x))

    (define-method (+ (x <py>) y)
      (let ((f (mref-py- x '__add__)))
        (if f
            (f y)
            (+x y x))))

    (define-method (+ (x <pyf>) y)
      (let ((f (mref-py x '__add__)))
        (if f
            (let ((res (f y)))
              (if (eq? res not-implemented)                  
                  (+x y x)
                  res))
            (+x y x))))

    (define-method (+ (x <py>) y)
      (let ((f (mref-py- x '__add__)))
        (if f
            (let ((res (f y)))
              (if (eq? res not-implemented)                  
                  (+x y x)
                  res))
            (+x y x))))
    
    (define-method (+ x (y <py>))
      (call y '__radd__ x))

    (define-method (+ x (y <pyf>))
      (call y '__radd__ x))
    
    (define-method (+x (x <p>) y)
      (call x '__radd__ y))))

;; A few arithmetic operations at service
(mk-arith + +x __add__ __radd__)
(mk-arith - -x __sub__ __rsub__)
(mk-arith * *x __mul__ __rmul__)

;; lets define get put pcall etc so that we can refer to an object like
;; e.g. (put x.y.z 1) (pcall x.y 1)

(define-syntax-rule (cross x k f set)
  (call-with-values (lambda () f)
    (lambda (r y)
      (if (eq? x y)
          (values r x)
          (values r (set x k y))))))

(define-syntax-rule (cross! x k f _) f)

(define-syntax mku
  (syntax-rules ()
    ((_ cross set setx f (key) (val ...))
     (setx f key val ...))
    ((_ cross setx f (k . l) val)
     (cross f k (mku cross set setx (ref f k) l val) set))))

(define-syntax-rule (mkk pset setx set cross)
  (define-syntax pset
    (lambda (x)   
      (syntax-case x ()
        ((_ f val (... ...))
         (let* ((to (lambda (x)
                      (datum->syntax #'f  (string->symbol x))))
                (l (string-split (symbol->string (syntax->datum #'f)) #\.)))
           (with-syntax (((a (... ...)) (map (lambda (x) #`'#,(to x))
                                             (cdr l)))
                         (h       (to (car l))))
             #'(mku cross set h (a (... ...)) (val (... ...))))))))))

(mkk put    fset  fset cross)
(mkk put!   set   set  cross!)
(mkk pcall! call  fset cross!)
(mkk pcall  fcall fset cross)
(mkk get    ref   fset cross!)

;; it's good to have a null object so we don't need to construct it all the
;; time because it is functional we can get away with this.
(define null (make-pf))

;; append the bindings in x in front of y + some optimizations
(define (union x y)
  (define hx (slot-ref x 'h))
  (define hy (slot-ref y 'h))
  (define n  (slot-ref x 'n))
  (define s  (slot-ref x 'size))
  (define m (make-hash-table))

  (define h
    (vhash-fold
     (lambda (k v st)
       (if (vhash-assq k hy)
           (begin
             (set! s (+ s 1))
             (vhash-consq k v st))
           (if (hash-ref m k)
               s
               (begin
                 (set! n (+ n 1))
                 (set! s (+ s 1))
                 (hash-set! m k #t)
                 (vhash-consq k v st)))))
     hy
     hx))
  
  (define out (make <pf>))
  (slot-set! out 'h h)
  (slot-set! out 'n n)
  (slot-set! out 'size s)
  out)

(define (union- x y)
  (define hx (slot-ref x 'h))
  (define hy (slot-ref y 'h))  
  (define out (make <p>))
  (hash-for-each (lambda (k v) (hash-set! hy k v)) hx)
  (slot-set! out 'h hy)
  out)


;; make a class. A class add some meta information to allow for multiple
;; inherritance and add effectively static data to the object the functional
;; datastructure show it's effeciency now const is data that will not change
;; and bindings that are added to all objects. Dynamic is the mutating class
;; information. supers is a list of priorities
(define-syntax-rule (mk-pf make-pf-class <pf>)
  (define (make-pf-class name const dynamic supers)
    (define class dynamic)
    (define-class <pf> (<pf>))
    (put! class.__const__
          (union const
                 (let lp ((sup supers))
                   (if (pair? sup)
                       (union (ref (car sup) '__const__  null)
                              (lp (cdr supers)))
                       null))))
  
    (reshape (get class.__const__ null))

    (put! class.__goops__    <pf>)
    (put! class.__name__     name)
    (put! class.__parents__  supers)

    (put! class.__const__.__name__    (cons name 'obj))
    (put! class.__const__.__class__   class)
    (put! class.__const__.__parents__ supers)
    class))

(mk-pf make-pf-class <pf>)
(mk-pf make-pf-class <pyf>)

(define-syntax-rule (mk-p make-p-class <p>)
  (define (make-p-class name const dynamic supers)
    (define class dynamic)
    (define-class <p> (<p>))
    (put! class.__const__
          (union- const
                  (let lp ((sup supers))
                    (if (pair? sup)
                        (union- (ref (car sup) '__const__  null)
                                (lp (cdr supers)))
                        (make-p)))))
    

    (put! class.__goops__    <p>)
    (put! class.__name__     name)
    (put! class.__parents__  supers)

    (put! class.__const__.__name__    (cons name 'obj))
    (put! class.__const__.__class__   class)
    (put! class.__const__.__parents__ supers)
  
    (union- class (get class.__const__))))

(mk-p  make-p-class  <p>)
(mk-py make-py-class <py>)

;; Let's make an object essentially just move a reference
(define-method (mk (x <pf>) . l)
  (let ((r (get x.__const__))
        (k (make (get class.__goops__))))
    (slot-set! k 'h (slot-ref r 'h))
    (slot-set! k 'size (slot-ref r 'size))
    (slot-set! k 'n (slot-ref r 'n))
    (apply (ref k '__init__ (lambda x (values))) k l)
    k))

(define-method (mk (x <p>) . l)
  (let ((k (make (get x.__goops__))))
    (put! r.__class__ x)
    (apply (ref r '__init__ (lambda x (values))) r l)
    r))

;; the make class and defclass syntactic sugar
(define-syntax-rule (mk-p/f mk-pf-class make-pf-class)
  (define-syntax-rule (mk-pf-class name (parents (... ...))
                                   #:const
                                   ((sdef mname sval) (... ...))
                                   #:dynamic
                                   ((ddef dname dval) (... ...)))
    (let ()
      (define name
        (make-pf-class 'name
                       (let ((s (make-pf)))
                         (set s 'mname sval) (... ...)
                         s)
                       (let ((d (make-pf)))
                         (set d 'dname dval) (... ...)
                         d)                 
                       (list parents (... ...))))
      name)))

(mk-p/f mk-pf-class  make-pf-class)
(mk-p/f mk-p-class   make-p-class)
(mk-p/f mk-pyf-class make-pyf-class)
(mk-p/f mk-py-class  make-py-class)
  
(define-syntax-rule (def-pf-class name . l)
  (define name (mk-pf-class name . l)))

(define-syntax-rule (def-p-class  name . l)
  (define name (mk-p-class name . l)))

(define-syntax-rule (def-pyf-class name . l)
  (define name (mk-pyf-class name . l)))

(define-syntax-rule (def-py-class  name . l)
  (define name (mk-py-class name . l)))