summaryrefslogtreecommitdiff
path: root/modules/language/python/module/statistics.py
diff options
context:
space:
mode:
authorStefan Israelsson Tampe <stefan.itampe@gmail.com>2018-09-05 14:43:00 +0200
committerStefan Israelsson Tampe <stefan.itampe@gmail.com>2018-09-05 14:43:00 +0200
commit7d099358d6fa37f8686da72bb7811d717293c96f (patch)
tree5415c2de988ec7eafcd762b8dd664a6f16659cd7 /modules/language/python/module/statistics.py
parent3ec76f0441ba3658eeceb8db8ca0131fe4038480 (diff)
statistics
Diffstat (limited to 'modules/language/python/module/statistics.py')
-rw-r--r--modules/language/python/module/statistics.py672
1 files changed, 672 insertions, 0 deletions
diff --git a/modules/language/python/module/statistics.py b/modules/language/python/module/statistics.py
new file mode 100644
index 0000000..9368a93
--- /dev/null
+++ b/modules/language/python/module/statistics.py
@@ -0,0 +1,672 @@
+module(statistics)
+
+"""
+Basic statistics module.
+
+This module provides functions for calculating statistics of data, including
+averages, variance, and standard deviation.
+
+Calculating averages
+--------------------
+
+================== =============================================
+Function Description
+================== =============================================
+mean Arithmetic mean (average) of data.
+harmonic_mean Harmonic mean of data.
+median Median (middle value) of data.
+median_low Low median of data.
+median_high High median of data.
+median_grouped Median, or 50th percentile, of grouped data.
+mode Mode (most common value) of data.
+================== =============================================
+
+Calculate the arithmetic mean ("the average") of data:
+
+>>> mean([-1.0, 2.5, 3.25, 5.75])
+2.625
+
+
+Calculate the standard median of discrete data:
+
+>>> median([2, 3, 4, 5])
+3.5
+
+
+Calculate the median, or 50th percentile, of data grouped into class intervals
+centred on the data values provided. E.g. if your data points are rounded to
+the nearest whole number:
+
+>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
+2.8333333333...
+
+This should be interpreted in this way: you have two data points in the class
+interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
+the class interval 3.5-4.5. The median of these data points is 2.8333...
+
+
+Calculating variability or spread
+---------------------------------
+
+================== =============================================
+Function Description
+================== =============================================
+pvariance Population variance of data.
+variance Sample variance of data.
+pstdev Population standard deviation of data.
+stdev Sample standard deviation of data.
+================== =============================================
+
+Calculate the standard deviation of sample data:
+
+>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
+4.38961843444...
+
+If you have previously calculated the mean, you can pass it as the optional
+second argument to the four "spread" functions to avoid recalculating it:
+
+>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
+>>> mu = mean(data)
+>>> pvariance(data, mu)
+2.5
+
+
+Exceptions
+----------
+
+A single exception is defined: StatisticsError is a subclass of ValueError.
+
+"""
+
+__all__ = [ 'StatisticsError',
+ 'pstdev', 'pvariance', 'stdev', 'variance',
+ 'median', 'median_low', 'median_high', 'median_grouped',
+ 'mean', 'mode', 'harmonic_mean',
+ ]
+
+import collections
+import decimal
+import math
+import numbers
+
+from fractions import Fraction
+from decimal import Decimal
+from itertools import groupby, chain
+from bisect import bisect_left, bisect_right
+
+
+
+# === Exceptions ===
+
+class StatisticsError(ValueError):
+ pass
+
+
+# === Private utilities ===
+
+def _sum(data, start=0):
+ """_sum(data [, start]) -> (type, sum, count)
+
+ Return a high-precision sum of the given numeric data as a fraction,
+ together with the type to be converted to and the count of items.
+
+ If optional argument ``start`` is given, it is added to the total.
+ If ``data`` is empty, ``start`` (defaulting to 0) is returned.
+
+
+ Examples
+ --------
+
+ >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
+ (<class 'float'>, Fraction(11, 1), 5)
+
+ Some sources of round-off error will be avoided:
+
+ # Built-in sum returns zero.
+ >>> _sum([1e50, 1, -1e50] * 1000)
+ (<class 'float'>, Fraction(1000, 1), 3000)
+
+ Fractions and Decimals are also supported:
+
+ >>> from fractions import Fraction as F
+ >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
+ (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
+
+ >>> from decimal import Decimal as D
+ >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
+ >>> _sum(data)
+ (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
+
+ Mixed types are currently treated as an error, except that int is
+ allowed.
+ """
+ count = 0
+ n, d = _exact_ratio(start)
+ partials = {d: n}
+ partials_get = partials.get
+ T = _coerce(int, type(start))
+ for typ, values in groupby(data, type):
+ T = _coerce(T, typ) # or raise TypeError
+ for n,d in map(_exact_ratio, values):
+ count += 1
+ partials[d] = partials_get(d, 0) + n
+ if None in partials:
+ # The sum will be a NAN or INF. We can ignore all the finite
+ # partials, and just look at this special one.
+ total = partials[None]
+ assert not _isfinite(total)
+ else:
+ # Sum all the partial sums using builtin sum.
+ # FIXME is this faster if we sum them in order of the denominator?
+ total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
+ return (T, total, count)
+
+
+def _isfinite(x):
+ try:
+ return x.is_finite() # Likely a Decimal.
+ except AttributeError:
+ return math.isfinite(x) # Coerces to float first.
+
+
+def _coerce(T, S):
+ """Coerce types T and S to a common type, or raise TypeError.
+
+ Coercion rules are currently an implementation detail. See the CoerceTest
+ test class in test_statistics for details.
+ """
+ # See http://bugs.python.org/issue24068.
+ assert T is not bool, "initial type T is bool"
+ # If the types are the same, no need to coerce anything. Put this
+ # first, so that the usual case (no coercion needed) happens as soon
+ # as possible.
+ if T is S: return T
+ # Mixed int & other coerce to the other type.
+ if S is int or S is bool: return T
+ if T is int: return S
+ # If one is a (strict) subclass of the other, coerce to the subclass.
+ if issubclass(S, T): return S
+ if issubclass(T, S): return T
+ # Ints coerce to the other type.
+ if issubclass(T, int): return S
+ if issubclass(S, int): return T
+ # Mixed fraction & float coerces to float (or float subclass).
+ if issubclass(T, Fraction) and issubclass(S, float):
+ return S
+ if issubclass(T, float) and issubclass(S, Fraction):
+ return T
+ # Any other combination is disallowed.
+ msg = "don't know how to coerce %s and %s"
+ raise TypeError(msg % (T.__name__, S.__name__))
+
+
+def _exact_ratio(x):
+ """Return Real number x to exact (numerator, denominator) pair.
+
+ >>> _exact_ratio(0.25)
+ (1, 4)
+
+ x is expected to be an int, Fraction, Decimal or float.
+ """
+ try:
+ # Optimise the common case of floats. We expect that the most often
+ # used numeric type will be builtin floats, so try to make this as
+ # fast as possible.
+ if type(x) is float or type(x) is Decimal:
+ return x.as_integer_ratio()
+ try:
+ # x may be an int, Fraction, or Integral ABC.
+ return (x.numerator, x.denominator)
+ except AttributeError:
+ try:
+ # x may be a float or Decimal subclass.
+ return x.as_integer_ratio()
+ except AttributeError:
+ # Just give up?
+ pass
+ except (OverflowError, ValueError):
+ # float NAN or INF.
+ assert not _isfinite(x)
+ return (x, None)
+ msg = "can't convert type '{}' to numerator/denominator"
+ raise TypeError(msg.format(type(x).__name__))
+
+
+def _convert(value, T):
+ """Convert value to given numeric type T."""
+ if type(value) is T:
+ # This covers the cases where T is Fraction, or where value is
+ # a NAN or INF (Decimal or float).
+ return value
+ if issubclass(T, int) and value.denominator != 1:
+ T = float
+ try:
+ # FIXME: what do we do if this overflows?
+ return T(value)
+ except TypeError:
+ if issubclass(T, Decimal):
+ return T(value.numerator)/T(value.denominator)
+ else:
+ raise
+
+
+def _counts(data):
+ # Generate a table of sorted (value, frequency) pairs.
+ table = collections.Counter(iter(data)).most_common()
+ if not table:
+ return table
+ # Extract the values with the highest frequency.
+ maxfreq = table[0][1]
+ for i in range(1, len(table)):
+ if table[i][1] != maxfreq:
+ table = table[:i]
+ break
+ return table
+
+
+def _find_lteq(a, x):
+ 'Locate the leftmost value exactly equal to x'
+ i = bisect_left(a, x)
+ if i != len(a) and a[i] == x:
+ return i
+ raise ValueError
+
+
+def _find_rteq(a, l, x):
+ 'Locate the rightmost value exactly equal to x'
+ i = bisect_right(a, x, lo=l)
+ if i != (len(a)+1) and a[i-1] == x:
+ return i-1
+ raise ValueError
+
+
+def _fail_neg(values, errmsg='negative value'):
+ """Iterate over values, failing if any are less than zero."""
+ for x in values:
+ if x < 0:
+ raise StatisticsError(errmsg)
+ yield x
+
+
+# === Measures of central tendency (averages) ===
+
+def mean(data):
+ """Return the sample arithmetic mean of data.
+
+ >>> mean([1, 2, 3, 4, 4])
+ 2.8
+
+ >>> from fractions import Fraction as F
+ >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
+ Fraction(13, 21)
+
+ >>> from decimal import Decimal as D
+ >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
+ Decimal('0.5625')
+
+ If ``data`` is empty, StatisticsError will be raised.
+ """
+ if iter(data) is data:
+ data = list(data)
+ n = len(data)
+ if n < 1:
+ raise StatisticsError('mean requires at least one data point')
+ T, total, count = _sum(data)
+ assert count == n
+ return _convert(total/n, T)
+
+
+def harmonic_mean(data):
+ """Return the harmonic mean of data.
+
+ The harmonic mean, sometimes called the subcontrary mean, is the
+ reciprocal of the arithmetic mean of the reciprocals of the data,
+ and is often appropriate when averaging quantities which are rates
+ or ratios, for example speeds. Example:
+
+ Suppose an investor purchases an equal value of shares in each of
+ three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
+ What is the average P/E ratio for the investor's portfolio?
+
+ >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
+ 3.6
+
+ Using the arithmetic mean would give an average of about 5.167, which
+ is too high.
+
+ If ``data`` is empty, or any element is less than zero,
+ ``harmonic_mean`` will raise ``StatisticsError``.
+ """
+ # For a justification for using harmonic mean for P/E ratios, see
+ # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
+ # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
+ if iter(data) is data:
+ data = list(data)
+ errmsg = 'harmonic mean does not support negative values'
+ n = len(data)
+ if n < 1:
+ raise StatisticsError('harmonic_mean requires at least one data point')
+ elif n == 1:
+ x = data[0]
+ if isinstance(x, (numbers.Real, Decimal)):
+ if x < 0:
+ raise StatisticsError(errmsg)
+ return x
+ else:
+ raise TypeError('unsupported type')
+ try:
+ T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
+ except ZeroDivisionError:
+ return 0
+ assert count == n
+ return _convert(n/total, T)
+
+
+# FIXME: investigate ways to calculate medians without sorting? Quickselect?
+def median(data):
+ """Return the median (middle value) of numeric data.
+
+ When the number of data points is odd, return the middle data point.
+ When the number of data points is even, the median is interpolated by
+ taking the average of the two middle values:
+
+ >>> median([1, 3, 5])
+ 3
+ >>> median([1, 3, 5, 7])
+ 4.0
+
+ """
+ data = sorted(data)
+ n = len(data)
+ if n == 0:
+ raise StatisticsError("no median for empty data")
+ if n%2 == 1:
+ return data[n//2]
+ else:
+ i = n//2
+ return (data[i - 1] + data[i])/2
+
+
+def median_low(data):
+ """Return the low median of numeric data.
+
+ When the number of data points is odd, the middle value is returned.
+ When it is even, the smaller of the two middle values is returned.
+
+ >>> median_low([1, 3, 5])
+ 3
+ >>> median_low([1, 3, 5, 7])
+ 3
+
+ """
+ data = sorted(data)
+ n = len(data)
+ if n == 0:
+ raise StatisticsError("no median for empty data")
+ if n%2 == 1:
+ return data[n//2]
+ else:
+ return data[n//2 - 1]
+
+
+def median_high(data):
+ """Return the high median of data.
+
+ When the number of data points is odd, the middle value is returned.
+ When it is even, the larger of the two middle values is returned.
+
+ >>> median_high([1, 3, 5])
+ 3
+ >>> median_high([1, 3, 5, 7])
+ 5
+
+ """
+ data = sorted(data)
+ n = len(data)
+ if n == 0:
+ raise StatisticsError("no median for empty data")
+ return data[n//2]
+
+
+def median_grouped(data, interval=1):
+ """Return the 50th percentile (median) of grouped continuous data.
+
+ >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
+ 3.7
+ >>> median_grouped([52, 52, 53, 54])
+ 52.5
+
+ This calculates the median as the 50th percentile, and should be
+ used when your data is continuous and grouped. In the above example,
+ the values 1, 2, 3, etc. actually represent the midpoint of classes
+ 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
+ class 3.5-4.5, and interpolation is used to estimate it.
+
+ Optional argument ``interval`` represents the class interval, and
+ defaults to 1. Changing the class interval naturally will change the
+ interpolated 50th percentile value:
+
+ >>> median_grouped([1, 3, 3, 5, 7], interval=1)
+ 3.25
+ >>> median_grouped([1, 3, 3, 5, 7], interval=2)
+ 3.5
+
+ This function does not check whether the data points are at least
+ ``interval`` apart.
+ """
+ data = sorted(data)
+ n = len(data)
+ if n == 0:
+ raise StatisticsError("no median for empty data")
+ elif n == 1:
+ return data[0]
+ # Find the value at the midpoint. Remember this corresponds to the
+ # centre of the class interval.
+ x = data[n//2]
+ for obj in (x, interval):
+ if isinstance(obj, (str, bytes)):
+ raise TypeError('expected number but got %r' % obj)
+ try:
+ L = x - interval/2 # The lower limit of the median interval.
+ except TypeError:
+ # Mixed type. For now we just coerce to float.
+ L = float(x) - float(interval)/2
+
+ # Uses bisection search to search for x in data with log(n) time complexity
+ # Find the position of leftmost occurrence of x in data
+ l1 = _find_lteq(data, x)
+ # Find the position of rightmost occurrence of x in data[l1...len(data)]
+ # Assuming always l1 <= l2
+ l2 = _find_rteq(data, l1, x)
+ cf = l1
+ f = l2 - l1 + 1
+ return L + interval*(n/2 - cf)/f
+
+
+def mode(data):
+ """Return the most common data point from discrete or nominal data.
+
+ ``mode`` assumes discrete data, and returns a single value. This is the
+ standard treatment of the mode as commonly taught in schools:
+
+ >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
+ 3
+
+ This also works with nominal (non-numeric) data:
+
+ >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
+ 'red'
+
+ If there is not exactly one most common value, ``mode`` will raise
+ StatisticsError.
+ """
+ # Generate a table of sorted (value, frequency) pairs.
+ table = _counts(data)
+ if len(table) == 1:
+ return table[0][0]
+ elif table:
+ raise StatisticsError(
+ 'no unique mode; found %d equally common values' % len(table)
+ )
+ else:
+ raise StatisticsError('no mode for empty data')
+
+
+# === Measures of spread ===
+
+# See http://mathworld.wolfram.com/Variance.html
+# http://mathworld.wolfram.com/SampleVariance.html
+# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
+#
+# Under no circumstances use the so-called "computational formula for
+# variance", as that is only suitable for hand calculations with a small
+# amount of low-precision data. It has terrible numeric properties.
+#
+# See a comparison of three computational methods here:
+# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
+
+def _ss(data, c=None):
+ """Return sum of square deviations of sequence data.
+
+ If ``c`` is None, the mean is calculated in one pass, and the deviations
+ from the mean are calculated in a second pass. Otherwise, deviations are
+ calculated from ``c`` as given. Use the second case with care, as it can
+ lead to garbage results.
+ """
+ if c is None:
+ c = mean(data)
+ T, total, count = _sum((x-c)**2 for x in data)
+ # The following sum should mathematically equal zero, but due to rounding
+ # error may not.
+ U, total2, count2 = _sum((x-c) for x in data)
+ assert T == U and count == count2
+ total -= total2**2/len(data)
+ assert not total < 0, 'negative sum of square deviations: %f' % total
+ return (T, total)
+
+
+def variance(data, xbar=None):
+ """Return the sample variance of data.
+
+ data should be an iterable of Real-valued numbers, with at least two
+ values. The optional argument xbar, if given, should be the mean of
+ the data. If it is missing or None, the mean is automatically calculated.
+
+ Use this function when your data is a sample from a population. To
+ calculate the variance from the entire population, see ``pvariance``.
+
+ Examples:
+
+ >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
+ >>> variance(data)
+ 1.3720238095238095
+
+ If you have already calculated the mean of your data, you can pass it as
+ the optional second argument ``xbar`` to avoid recalculating it:
+
+ >>> m = mean(data)
+ >>> variance(data, m)
+ 1.3720238095238095
+
+ This function does not check that ``xbar`` is actually the mean of
+ ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
+ impossible results.
+
+ Decimals and Fractions are supported:
+
+ >>> from decimal import Decimal as D
+ >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
+ Decimal('31.01875')
+
+ >>> from fractions import Fraction as F
+ >>> variance([F(1, 6), F(1, 2), F(5, 3)])
+ Fraction(67, 108)
+
+ """
+ if iter(data) is data:
+ data = list(data)
+ n = len(data)
+ if n < 2:
+ raise StatisticsError('variance requires at least two data points')
+ T, ss = _ss(data, xbar)
+ return _convert(ss/(n-1), T)
+
+
+def pvariance(data, mu=None):
+ """Return the population variance of ``data``.
+
+ data should be an iterable of Real-valued numbers, with at least one
+ value. The optional argument mu, if given, should be the mean of
+ the data. If it is missing or None, the mean is automatically calculated.
+
+ Use this function to calculate the variance from the entire population.
+ To estimate the variance from a sample, the ``variance`` function is
+ usually a better choice.
+
+ Examples:
+
+ >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
+ >>> pvariance(data)
+ 1.25
+
+ If you have already calculated the mean of the data, you can pass it as
+ the optional second argument to avoid recalculating it:
+
+ >>> mu = mean(data)
+ >>> pvariance(data, mu)
+ 1.25
+
+ This function does not check that ``mu`` is actually the mean of ``data``.
+ Giving arbitrary values for ``mu`` may lead to invalid or impossible
+ results.
+
+ Decimals and Fractions are supported:
+
+ >>> from decimal import Decimal as D
+ >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
+ Decimal('24.815')
+
+ >>> from fractions import Fraction as F
+ >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
+ Fraction(13, 72)
+
+ """
+ if iter(data) is data:
+ data = list(data)
+ n = len(data)
+ if n < 1:
+ raise StatisticsError('pvariance requires at least one data point')
+ T, ss = _ss(data, mu)
+ return _convert(ss/n, T)
+
+
+def stdev(data, xbar=None):
+ """Return the square root of the sample variance.
+
+ See ``variance`` for arguments and other details.
+
+ >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
+ 1.0810874155219827
+
+ """
+ var = variance(data, xbar)
+ try:
+ return var.sqrt()
+ except AttributeError:
+ return math.sqrt(var)
+
+
+def pstdev(data, mu=None):
+ """Return the square root of the population variance.
+
+ See ``pvariance`` for arguments and other details.
+
+ >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
+ 0.986893273527251
+
+ """
+ var = pvariance(data, mu)
+ try:
+ return var.sqrt()
+ except AttributeError:
+ return math.sqrt(var)