summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorStefan Israelsson Tampe <stefan.itampe@gmail.com>2018-08-27 21:23:18 +0200
committerStefan Israelsson Tampe <stefan.itampe@gmail.com>2018-08-27 21:23:18 +0200
commitb50c95c519c2b1f72badabf608c038e91d788213 (patch)
treeba82d41654cfdee7daee25c7e2ef9366ecfa389f
parent44b33505e59219864881bf2c3bfe1fb445d4b91c (diff)
random.py
-rw-r--r--modules/language/python/compile.scm2
-rw-r--r--modules/language/python/module/_random.scm27
-rw-r--r--modules/language/python/module/random.py770
-rw-r--r--modules/language/python/module/types.scm5
4 files changed, 802 insertions, 2 deletions
diff --git a/modules/language/python/compile.scm b/modules/language/python/compile.scm
index 0f964ff..7afbc5b 100644
--- a/modules/language/python/compile.scm
+++ b/modules/language/python/compile.scm
@@ -847,7 +847,7 @@
(fast? (not (eq? vf 'super))))
(define (pw x)
(if **
- `(expt ,x ,(exp vs **))
+ `(,(G expt) ,x ,(exp vs **))
x))
(pw
(let ((trailer (get-addings vs trailer fast?)))
diff --git a/modules/language/python/module/_random.scm b/modules/language/python/module/_random.scm
new file mode 100644
index 0000000..6e2660a
--- /dev/null
+++ b/modules/language/python/module/_random.scm
@@ -0,0 +1,27 @@
+(define-module (langauge python module _random)
+ #:use-module (oop pf-objects)
+ #:export ())
+
+(define-python-class Random ()
+ (define seed
+ (lambda (self s)
+ (rawset self '_state (seed->random-state s))))
+
+ (define setstate
+ (lambda (self s)
+ (rawset self '_state s)))
+
+ (define getstate
+ (lambda (self)
+ (aif it (rawref self '_state)
+ it
+ (let ((ret (copy-random-state)))
+ (set self '_state ret)
+ ret))))
+
+ (define random
+ (lambda (self)
+ (let ((x (random:uniform (getstate self))))
+ (rawset self '_state (copy-random-state))))))
+
+
diff --git a/modules/language/python/module/random.py b/modules/language/python/module/random.py
new file mode 100644
index 0000000..0c38aa0
--- /dev/null
+++ b/modules/language/python/module/random.py
@@ -0,0 +1,770 @@
+module(random)
+
+"""Random variable generators.
+
+ integers
+ --------
+ uniform within range
+
+ sequences
+ ---------
+ pick random element
+ pick random sample
+ pick weighted random sample
+ generate random permutation
+
+ distributions on the real line:
+ ------------------------------
+ uniform
+ triangular
+ normal (Gaussian)
+ lognormal
+ negative exponential
+ gamma
+ beta
+ pareto
+ Weibull
+
+ distributions on the circle (angles 0 to 2pi)
+ ---------------------------------------------
+ circular uniform
+ von Mises
+
+General notes on the underlying Mersenne Twister core generator:
+
+* The period is 2**19937-1.
+* It is one of the most extensively tested generators in existence.
+* The random() method is implemented in C, executes in a single Python step,
+ and is, therefore, threadsafe.
+
+"""
+
+from warnings import warn as _warn
+from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
+from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
+from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
+from os import urandom as _urandom
+from collections.abc import Set as _Set, Sequence as _Sequence
+from hashlib import sha512 as _sha512
+import itertools as _itertools
+import bisect as _bisect
+
+__all__ = ["Random","seed","random","uniform","randint","choice","sample",
+ "randrange","shuffle","normalvariate","lognormvariate",
+ "expovariate","vonmisesvariate","gammavariate","triangular",
+ "gauss","betavariate","paretovariate","weibullvariate",
+ "getstate","setstate", "getrandbits", "choices",
+ "SystemRandom"]
+
+NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
+TWOPI = 2.0*_pi
+LOG4 = _log(4.0)
+SG_MAGICCONST = 1.0 + _log(4.5)
+BPF = 53 # Number of bits in a float
+RECIP_BPF = 2**-BPF
+
+
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley. Adapted by Raymond Hettinger for use with
+# the Mersenne Twister and os.urandom() core generators.
+
+import _random
+
+class Random(_random.Random):
+ """Random number generator base class used by bound module functions.
+
+ Used to instantiate instances of Random to get generators that don't
+ share state.
+
+ Class Random can also be subclassed if you want to use a different basic
+ generator of your own devising: in that case, override the following
+ methods: random(), seed(), getstate(), and setstate().
+ Optionally, implement a getrandbits() method so that randrange()
+ can cover arbitrarily large ranges.
+
+ """
+
+ VERSION = 3 # used by getstate/setstate
+
+ def __init__(self, x=None):
+ """Initialize an instance.
+
+ Optional argument x controls seeding, as for Random.seed().
+ """
+
+ self.seed(x)
+ self.gauss_next = None
+
+ def seed(self, a=None, version=2):
+ """Initialize internal state from hashable object.
+
+ None or no argument seeds from current time or from an operating
+ system specific randomness source if available.
+
+ If *a* is an int, all bits are used.
+
+ For version 2 (the default), all of the bits are used if *a* is a str,
+ bytes, or bytearray. For version 1 (provided for reproducing random
+ sequences from older versions of Python), the algorithm for str and
+ bytes generates a narrower range of seeds.
+
+ """
+
+ if version == 1 and isinstance(a, (str, bytes)):
+ a = a.decode('latin-1') if isinstance(a, bytes) else a
+ x = ord(a[0]) << 7 if a else 0
+ for c in map(ord, a):
+ x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
+ x ^= len(a)
+ a = -2 if x == -1 else x
+
+ if version == 2 and isinstance(a, (str, bytes, bytearray)):
+ if isinstance(a, str):
+ a = a.encode()
+ a += _sha512(a).digest()
+ a = int.from_bytes(a, 'big')
+
+ super().seed(a)
+ self.gauss_next = None
+
+ def getstate(self):
+ """Return internal state; can be passed to setstate() later."""
+ return self.VERSION, super().getstate(), self.gauss_next
+
+ def setstate(self, state):
+ """Restore internal state from object returned by getstate()."""
+ version = state[0]
+ if version == 3:
+ version, internalstate, self.gauss_next = state
+ super().setstate(internalstate)
+ elif version == 2:
+ version, internalstate, self.gauss_next = state
+ # In version 2, the state was saved as signed ints, which causes
+ # inconsistencies between 32/64-bit systems. The state is
+ # really unsigned 32-bit ints, so we convert negative ints from
+ # version 2 to positive longs for version 3.
+ try:
+ internalstate = tuple(x % (2**32) for x in internalstate)
+ except ValueError as e:
+ raise TypeError from e
+ super().setstate(internalstate)
+ else:
+ raise ValueError("state with version %s passed to "
+ "Random.setstate() of version %s" %
+ (version, self.VERSION))
+
+## ---- Methods below this point do not need to be overridden when
+## ---- subclassing for the purpose of using a different core generator.
+
+## -------------------- pickle support -------------------
+
+ # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
+ # longer called; we leave it here because it has been here since random was
+ # rewritten back in 2001 and why risk breaking something.
+ def __getstate__(self): # for pickle
+ return self.getstate()
+
+ def __setstate__(self, state): # for pickle
+ self.setstate(state)
+
+ def __reduce__(self):
+ return self.__class__, (), self.getstate()
+
+## -------------------- integer methods -------------------
+
+ def randrange(self, start, stop=None, step=1, _int=int):
+ """Choose a random item from range(start, stop[, step]).
+
+ This fixes the problem with randint() which includes the
+ endpoint; in Python this is usually not what you want.
+
+ """
+
+ # This code is a bit messy to make it fast for the
+ # common case while still doing adequate error checking.
+ istart = _int(start)
+ if istart != start:
+ raise ValueError("non-integer arg 1 for randrange()")
+ if stop is None:
+ if istart > 0:
+ return self._randbelow(istart)
+ raise ValueError("empty range for randrange()")
+
+ # stop argument supplied.
+ istop = _int(stop)
+ if istop != stop:
+ raise ValueError("non-integer stop for randrange()")
+ width = istop - istart
+ if step == 1 and width > 0:
+ return istart + self._randbelow(width)
+ if step == 1:
+ raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))
+
+ # Non-unit step argument supplied.
+ istep = _int(step)
+ if istep != step:
+ raise ValueError("non-integer step for randrange()")
+ if istep > 0:
+ n = (width + istep - 1) // istep
+ elif istep < 0:
+ n = (width + istep + 1) // istep
+ else:
+ raise ValueError("zero step for randrange()")
+
+ if n <= 0:
+ raise ValueError("empty range for randrange()")
+
+ return istart + istep*self._randbelow(n)
+
+ def randint(self, a, b):
+ """Return random integer in range [a, b], including both end points.
+ """
+
+ return self.randrange(a, b+1)
+
+ def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
+ Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
+ "Return a random int in the range [0,n). Raises ValueError if n==0."
+
+ random = self.random
+ getrandbits = self.getrandbits
+ # Only call self.getrandbits if the original random() builtin method
+ # has not been overridden or if a new getrandbits() was supplied.
+ if type(random) is BuiltinMethod or type(getrandbits) is Method:
+ k = n.bit_length() # don't use (n-1) here because n can be 1
+ r = getrandbits(k) # 0 <= r < 2**k
+ while r >= n:
+ r = getrandbits(k)
+ return r
+ # There's an overridden random() method but no new getrandbits() method,
+ # so we can only use random() from here.
+ if n >= maxsize:
+ _warn("Underlying random() generator does not supply \n"
+ "enough bits to choose from a population range this large.\n"
+ "To remove the range limitation, add a getrandbits() method.")
+ return int(random() * n)
+ rem = maxsize % n
+ limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
+ r = random()
+ while r >= limit:
+ r = random()
+ return int(r*maxsize) % n
+
+## -------------------- sequence methods -------------------
+
+ def choice(self, seq):
+ """Choose a random element from a non-empty sequence."""
+ try:
+ i = self._randbelow(len(seq))
+ except ValueError:
+ raise IndexError('Cannot choose from an empty sequence') from None
+ return seq[i]
+
+ def shuffle(self, x, random=None):
+ """Shuffle list x in place, and return None.
+
+ Optional argument random is a 0-argument function returning a
+ random float in [0.0, 1.0); if it is the default None, the
+ standard random.random will be used.
+
+ """
+
+ if random is None:
+ randbelow = self._randbelow
+ for i in reversed(range(1, len(x))):
+ # pick an element in x[:i+1] with which to exchange x[i]
+ j = randbelow(i+1)
+ x[i], x[j] = x[j], x[i]
+ else:
+ _int = int
+ for i in reversed(range(1, len(x))):
+ # pick an element in x[:i+1] with which to exchange x[i]
+ j = _int(random() * (i+1))
+ x[i], x[j] = x[j], x[i]
+
+ def sample(self, population, k):
+ """Chooses k unique random elements from a population sequence or set.
+
+ Returns a new list containing elements from the population while
+ leaving the original population unchanged. The resulting list is
+ in selection order so that all sub-slices will also be valid random
+ samples. This allows raffle winners (the sample) to be partitioned
+ into grand prize and second place winners (the subslices).
+
+ Members of the population need not be hashable or unique. If the
+ population contains repeats, then each occurrence is a possible
+ selection in the sample.
+
+ To choose a sample in a range of integers, use range as an argument.
+ This is especially fast and space efficient for sampling from a
+ large population: sample(range(10000000), 60)
+ """
+
+ # Sampling without replacement entails tracking either potential
+ # selections (the pool) in a list or previous selections in a set.
+
+ # When the number of selections is small compared to the
+ # population, then tracking selections is efficient, requiring
+ # only a small set and an occasional reselection. For
+ # a larger number of selections, the pool tracking method is
+ # preferred since the list takes less space than the
+ # set and it doesn't suffer from frequent reselections.
+
+ if isinstance(population, _Set):
+ population = tuple(population)
+ if not isinstance(population, _Sequence):
+ raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
+ randbelow = self._randbelow
+ n = len(population)
+ if not 0 <= k <= n:
+ raise ValueError("Sample larger than population or is negative")
+ result = [None] * k
+ setsize = 21 # size of a small set minus size of an empty list
+ if k > 5:
+ setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
+ if n <= setsize:
+ # An n-length list is smaller than a k-length set
+ pool = list(population)
+ for i in range(k): # invariant: non-selected at [0,n-i)
+ j = randbelow(n-i)
+ result[i] = pool[j]
+ pool[j] = pool[n-i-1] # move non-selected item into vacancy
+ else:
+ selected = set()
+ selected_add = selected.add
+ for i in range(k):
+ j = randbelow(n)
+ while j in selected:
+ j = randbelow(n)
+ selected_add(j)
+ result[i] = population[j]
+ return result
+
+ def choices(self, population, weights=None, *, cum_weights=None, k=1):
+ """Return a k sized list of population elements chosen with replacement.
+
+ If the relative weights or cumulative weights are not specified,
+ the selections are made with equal probability.
+
+ """
+ random = self.random
+ if cum_weights is None:
+ if weights is None:
+ _int = int
+ total = len(population)
+ return [population[_int(random() * total)] for i in range(k)]
+ cum_weights = list(_itertools.accumulate(weights))
+ elif weights is not None:
+ raise TypeError('Cannot specify both weights and cumulative weights')
+ if len(cum_weights) != len(population):
+ raise ValueError('The number of weights does not match the population')
+ bisect = _bisect.bisect
+ total = cum_weights[-1]
+ return [population[bisect(cum_weights, random() * total)] for i in range(k)]
+
+## -------------------- real-valued distributions -------------------
+
+## -------------------- uniform distribution -------------------
+
+ def uniform(self, a, b):
+ "Get a random number in the range [a, b) or [a, b] depending on rounding."
+ return a + (b-a) * self.random()
+
+## -------------------- triangular --------------------
+
+ def triangular(self, low=0.0, high=1.0, mode=None):
+ """Triangular distribution.
+
+ Continuous distribution bounded by given lower and upper limits,
+ and having a given mode value in-between.
+
+ http://en.wikipedia.org/wiki/Triangular_distribution
+
+ """
+ u = self.random()
+ try:
+ c = 0.5 if mode is None else (mode - low) / (high - low)
+ except ZeroDivisionError:
+ return low
+ if u > c:
+ u = 1.0 - u
+ c = 1.0 - c
+ low, high = high, low
+ return low + (high - low) * (u * c) ** 0.5
+
+## -------------------- normal distribution --------------------
+
+ def normalvariate(self, mu, sigma):
+ """Normal distribution.
+
+ mu is the mean, and sigma is the standard deviation.
+
+ """
+ # mu = mean, sigma = standard deviation
+
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ random = self.random
+ while 1:
+ u1 = random()
+ u2 = 1.0 - random()
+ z = NV_MAGICCONST*(u1-0.5)/u2
+ zz = z*z/4.0
+ if zz <= -_log(u2):
+ break
+ return mu + z*sigma
+
+## -------------------- lognormal distribution --------------------
+
+ def lognormvariate(self, mu, sigma):
+ """Log normal distribution.
+
+ If you take the natural logarithm of this distribution, you'll get a
+ normal distribution with mean mu and standard deviation sigma.
+ mu can have any value, and sigma must be greater than zero.
+
+ """
+ return _exp(self.normalvariate(mu, sigma))
+
+## -------------------- exponential distribution --------------------
+
+ def expovariate(self, lambd):
+ """Exponential distribution.
+
+ lambd is 1.0 divided by the desired mean. It should be
+ nonzero. (The parameter would be called "lambda", but that is
+ a reserved word in Python.) Returned values range from 0 to
+ positive infinity if lambd is positive, and from negative
+ infinity to 0 if lambd is negative.
+
+ """
+ # lambd: rate lambd = 1/mean
+ # ('lambda' is a Python reserved word)
+
+ # we use 1-random() instead of random() to preclude the
+ # possibility of taking the log of zero.
+ return -_log(1.0 - self.random())/lambd
+
+## -------------------- von Mises distribution --------------------
+
+ def vonmisesvariate(self, mu, kappa):
+ """Circular data distribution.
+
+ mu is the mean angle, expressed in radians between 0 and 2*pi, and
+ kappa is the concentration parameter, which must be greater than or
+ equal to zero. If kappa is equal to zero, this distribution reduces
+ to a uniform random angle over the range 0 to 2*pi.
+
+ """
+ # mu: mean angle (in radians between 0 and 2*pi)
+ # kappa: concentration parameter kappa (>= 0)
+ # if kappa = 0 generate uniform random angle
+
+ # Based upon an algorithm published in: Fisher, N.I.,
+ # "Statistical Analysis of Circular Data", Cambridge
+ # University Press, 1993.
+
+ # Thanks to Magnus Kessler for a correction to the
+ # implementation of step 4.
+
+ random = self.random
+ if kappa <= 1e-6:
+ return TWOPI * random()
+
+ s = 0.5 / kappa
+ r = s + _sqrt(1.0 + s * s)
+
+ while 1:
+ u1 = random()
+ z = _cos(_pi * u1)
+
+ d = z / (r + z)
+ u2 = random()
+ if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
+ break
+
+ q = 1.0 / r
+ f = (q + z) / (1.0 + q * z)
+ u3 = random()
+ if u3 > 0.5:
+ theta = (mu + _acos(f)) % TWOPI
+ else:
+ theta = (mu - _acos(f)) % TWOPI
+
+ return theta
+
+## -------------------- gamma distribution --------------------
+
+ def gammavariate(self, alpha, beta):
+ """Gamma distribution. Not the gamma function!
+
+ Conditions on the parameters are alpha > 0 and beta > 0.
+
+ The probability distribution function is:
+
+ x ** (alpha - 1) * math.exp(-x / beta)
+ pdf(x) = --------------------------------------
+ math.gamma(alpha) * beta ** alpha
+
+ """
+
+ # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
+
+ # Warning: a few older sources define the gamma distribution in terms
+ # of alpha > -1.0
+ if alpha <= 0.0 or beta <= 0.0:
+ raise ValueError('gammavariate: alpha and beta must be > 0.0')
+
+ random = self.random
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ ainv = _sqrt(2.0 * alpha - 1.0)
+ bbb = alpha - LOG4
+ ccc = alpha + ainv
+
+ while 1:
+ u1 = random()
+ if not 1e-7 < u1 < .9999999:
+ continue
+ u2 = 1.0 - random()
+ v = _log(u1/(1.0-u1))/ainv
+ x = alpha*_exp(v)
+ z = u1*u1*u2
+ r = bbb+ccc*v-x
+ if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
+ return x * beta
+
+ elif alpha == 1.0:
+ # expovariate(1)
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -_log(u) * beta
+
+ else: # alpha is between 0 and 1 (exclusive)
+
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+ while 1:
+ u = random()
+ b = (_e + alpha)/_e
+ p = b*u
+ if p <= 1.0:
+ x = p ** (1.0/alpha)
+ else:
+ x = -_log((b-p)/alpha)
+ u1 = random()
+ if p > 1.0:
+ if u1 <= x ** (alpha - 1.0):
+ break
+ elif u1 <= _exp(-x):
+ break
+ return x * beta
+
+## -------------------- Gauss (faster alternative) --------------------
+
+ def gauss(self, mu, sigma):
+ """Gaussian distribution.
+
+ mu is the mean, and sigma is the standard deviation. This is
+ slightly faster than the normalvariate() function.
+
+ Not thread-safe without a lock around calls.
+
+ """
+
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z*sigma
+
+## -------------------- beta --------------------
+## See
+## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
+## for Ivan Frohne's insightful analysis of why the original implementation:
+##
+## def betavariate(self, alpha, beta):
+## # Discrete Event Simulation in C, pp 87-88.
+##
+## y = self.expovariate(alpha)
+## z = self.expovariate(1.0/beta)
+## return z/(y+z)
+##
+## was dead wrong, and how it probably got that way.
+
+ def betavariate(self, alpha, beta):
+ """Beta distribution.
+
+ Conditions on the parameters are alpha > 0 and beta > 0.
+ Returned values range between 0 and 1.
+
+ """
+
+ # This version due to Janne Sinkkonen, and matches all the std
+ # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
+ y = self.gammavariate(alpha, 1.0)
+ if y == 0:
+ return 0.0
+ else:
+ return y / (y + self.gammavariate(beta, 1.0))
+
+## -------------------- Pareto --------------------
+
+ def paretovariate(self, alpha):
+ """Pareto distribution. alpha is the shape parameter."""
+ # Jain, pg. 495
+
+ u = 1.0 - self.random()
+ return 1.0 / u ** (1.0/alpha)
+
+## -------------------- Weibull --------------------
+
+ def weibullvariate(self, alpha, beta):
+ """Weibull distribution.
+
+ alpha is the scale parameter and beta is the shape parameter.
+
+ """
+ # Jain, pg. 499; bug fix courtesy Bill Arms
+
+ u = 1.0 - self.random()
+ return alpha * (-_log(u)) ** (1.0/beta)
+
+## --------------- Operating System Random Source ------------------
+
+class SystemRandom(Random):
+ """Alternate random number generator using sources provided
+ by the operating system (such as /dev/urandom on Unix or
+ CryptGenRandom on Windows).
+
+ Not available on all systems (see os.urandom() for details).
+ """
+
+ def random(self):
+ """Get the next random number in the range [0.0, 1.0)."""
+ return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
+
+ def getrandbits(self, k):
+ """getrandbits(k) -> x. Generates an int with k random bits."""
+ if k <= 0:
+ raise ValueError('number of bits must be greater than zero')
+ if k != int(k):
+ raise TypeError('number of bits should be an integer')
+ numbytes = (k + 7) // 8 # bits / 8 and rounded up
+ x = int.from_bytes(_urandom(numbytes), 'big')
+ return x >> (numbytes * 8 - k) # trim excess bits
+
+ def seed(self, *args, **kwds):
+ "Stub method. Not used for a system random number generator."
+ return None
+
+ def _notimplemented(self, *args, **kwds):
+ "Method should not be called for a system random number generator."
+ raise NotImplementedError('System entropy source does not have state.')
+ getstate = setstate = _notimplemented
+
+## -------------------- test program --------------------
+
+def _test_generator(n, func, args):
+ import time
+ print(n, 'times', func.__name__)
+ total = 0.0
+ sqsum = 0.0
+ smallest = 1e10
+ largest = -1e10
+ t0 = time.time()
+ for i in range(n):
+ x = func(*args)
+ total += x
+ sqsum = sqsum + x*x
+ smallest = min(x, smallest)
+ largest = max(x, largest)
+ t1 = time.time()
+ print(round(t1-t0, 3), 'sec,', end=' ')
+ avg = total/n
+ stddev = _sqrt(sqsum/n - avg*avg)
+ print('avg %g, stddev %g, min %g, max %g\n' % \
+ (avg, stddev, smallest, largest))
+
+
+def _test(N=2000):
+ _test_generator(N, random, ())
+ _test_generator(N, normalvariate, (0.0, 1.0))
+ _test_generator(N, lognormvariate, (0.0, 1.0))
+ _test_generator(N, vonmisesvariate, (0.0, 1.0))
+ _test_generator(N, gammavariate, (0.01, 1.0))
+ _test_generator(N, gammavariate, (0.1, 1.0))
+ _test_generator(N, gammavariate, (0.1, 2.0))
+ _test_generator(N, gammavariate, (0.5, 1.0))
+ _test_generator(N, gammavariate, (0.9, 1.0))
+ _test_generator(N, gammavariate, (1.0, 1.0))
+ _test_generator(N, gammavariate, (2.0, 1.0))
+ _test_generator(N, gammavariate, (20.0, 1.0))
+ _test_generator(N, gammavariate, (200.0, 1.0))
+ _test_generator(N, gauss, (0.0, 1.0))
+ _test_generator(N, betavariate, (3.0, 3.0))
+ _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
+
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions. The functions share state across all uses
+#(both in the user's code and in the Python libraries), but that's fine
+# for most programs and is easier for the casual user than making them
+# instantiate their own Random() instance.
+
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+triangular = _inst.triangular
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+sample = _inst.sample
+shuffle = _inst.shuffle
+choices = _inst.choices
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+getrandbits = _inst.getrandbits
+
+if __name__ == '__main__':
+ _test()
diff --git a/modules/language/python/module/types.scm b/modules/language/python/module/types.scm
index 4448b6a..759a8be 100644
--- a/modules/language/python/module/types.scm
+++ b/modules/language/python/module/types.scm
@@ -7,7 +7,8 @@
#:use-module (language python dict)
#:use-module ((language python module python)
#:select (getattr type))
- #:export (MappingProxyType DynamicClassAttribute Functiontype LambdaType))
+ #:export (MappingProxyType DynamicClassAttribute Functiontype LambdaType
+ MethodType BuiltinMethodType))
"""
Define names for built-in types that aren't directly accessible as a builtin.
@@ -15,6 +16,8 @@ Define names for built-in types that aren't directly accessible as a builtin.
(define MappingProxyType dict)
(define FunctionType <procedure>)
(define LambdaType <procedure>)
+(define MethodType <procedure>)
+(define BuiltinMethodType #f)
(define-python-class DynamicClassAttribute ()
"Route attribute access on a class to __getattr__.