1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
;;;; q.scm --- Queues
;;;;
;;;; Copyright (C) 1995, 2001, 2004, 2006 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
;;; Commentary:
;;; Q: Based on the interface to
;;;
;;; "queue.scm" Queues/Stacks for Scheme
;;; Written by Andrew Wilcox (awilcox@astro.psu.edu) on April 1, 1992.
;;; {Q}
;;;
;;; A list is just a bunch of cons pairs that follows some constrains,
;;; right? Association lists are the same. Hash tables are just
;;; vectors and association lists. You can print them, read them,
;;; write them as constants, pun them off as other data structures
;;; etc. This is good. This is lisp. These structures are fast and
;;; compact and easy to manipulate arbitrarily because of their
;;; simple, regular structure and non-disjointedness (associations
;;; being lists and so forth).
;;;
;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
;;; structures in general.
;;;
;;; A queue is a cons pair:
;;; ( <the-q> . <last-pair> )
;;;
;;; <the-q> is a list of things in the q. New elements go at the end
;;; of that list.
;;;
;;; <last-pair> is #f if the q is empty, and otherwise is the last
;;; pair of <the-q>.
;;;
;;; q's print nicely, but alas, they do not read well because the
;;; eq?-ness of <last-pair> and (last-pair <the-q>) is lost by read.
;;;
;;; All the functions that aren't explicitly defined to return
;;; something else (a queue element; a boolean value) return the queue
;;; object itself.
;;; Code:
(define-module (ice-9 q)
:export (sync-q! make-q q? q-empty? q-empty-check q-front q-rear
q-remove! q-push! enq! q-pop! deq! q-length))
;;; sync-q!
;;; The procedure
;;;
;;; (sync-q! q)
;;;
;;; recomputes and resets the <last-pair> component of a queue.
;;;
(define (sync-q! q)
(set-cdr! q (if (pair? (car q)) (last-pair (car q))
#f))
q)
;;; make-q
;;; return a new q.
;;;
(define (make-q) (cons '() #f))
;;; q? obj
;;; Return true if obj is a Q.
;;; An object is a queue if it is equal? to '(() . #f)
;;; or it is a pair P with (list? (car P))
;;; and (eq? (cdr P) (last-pair (car P))).
;;;
(define (q? obj)
(and (pair? obj)
(if (pair? (car obj))
(eq? (cdr obj) (last-pair (car obj)))
(and (null? (car obj))
(not (cdr obj))))))
;;; q-empty? obj
;;;
(define (q-empty? obj) (null? (car obj)))
;;; q-empty-check q
;;; Throw a q-empty exception if Q is empty.
(define (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
;;; q-front q
;;; Return the first element of Q.
(define (q-front q) (q-empty-check q) (caar q))
;;; q-rear q
;;; Return the last element of Q.
(define (q-rear q) (q-empty-check q) (cadr q))
;;; q-remove! q obj
;;; Remove all occurences of obj from Q.
(define (q-remove! q obj)
(set-car! q (delq! obj (car q)))
(sync-q! q))
;;; q-push! q obj
;;; Add obj to the front of Q
(define (q-push! q obj)
(let ((h (cons obj (car q))))
(set-car! q h)
(or (cdr q) (set-cdr! q h)))
q)
;;; enq! q obj
;;; Add obj to the rear of Q
(define (enq! q obj)
(let ((h (cons obj '())))
(if (null? (car q))
(set-car! q h)
(set-cdr! (cdr q) h))
(set-cdr! q h))
q)
;;; q-pop! q
;;; Take the front of Q and return it.
(define (q-pop! q)
(q-empty-check q)
(let ((it (caar q))
(next (cdar q)))
(if (null? next)
(set-cdr! q #f))
(set-car! q next)
it))
;;; deq! q
;;; Take the front of Q and return it.
(define deq! q-pop!)
;;; q-length q
;;; Return the number of enqueued elements.
;;;
(define (q-length q) (length (car q)))
;;; q.scm ends here
|