1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
|
/* Copyright (C) 1995,1996,1997,1998,2000,2001,2002,2003,2004, 2005, 2006, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h>
#include "libguile/_scm.h"
#include "libguile/__scm.h"
#include "libguile/strings.h"
#include "libguile/array-handle.h"
#include "libguile/bitvectors.h"
#include "libguile/arrays.h"
#include "libguile/generalized-vectors.h"
#include "libguile/srfi-4.h"
/* Bit vectors. Would be nice if they were implemented on top of bytevectors,
* but alack, all we have is this crufty C.
*/
#define SCM_F_BITVECTOR_IMMUTABLE (0x80)
#define IS_BITVECTOR(obj) SCM_HAS_TYP7 ((obj), scm_tc7_bitvector)
#define IS_MUTABLE_BITVECTOR(x) \
(SCM_NIMP (x) && \
((SCM_CELL_TYPE (x) & (0x7f | SCM_F_BITVECTOR_IMMUTABLE)) \
== scm_tc7_bitvector))
#define BITVECTOR_LENGTH(obj) ((size_t)SCM_CELL_WORD_1(obj))
#define BITVECTOR_BITS(obj) ((scm_t_uint32 *)SCM_CELL_WORD_2(obj))
scm_t_uint32 *
scm_i_bitvector_bits (SCM vec)
{
if (!IS_BITVECTOR (vec))
abort ();
return BITVECTOR_BITS (vec);
}
int
scm_i_is_mutable_bitvector (SCM vec)
{
return IS_MUTABLE_BITVECTOR (vec);
}
int
scm_i_print_bitvector (SCM vec, SCM port, scm_print_state *pstate)
{
size_t bit_len = BITVECTOR_LENGTH (vec);
size_t word_len = (bit_len+31)/32;
scm_t_uint32 *bits = BITVECTOR_BITS (vec);
size_t i, j;
scm_puts ("#*", port);
for (i = 0; i < word_len; i++, bit_len -= 32)
{
scm_t_uint32 mask = 1;
for (j = 0; j < 32 && j < bit_len; j++, mask <<= 1)
scm_putc ((bits[i] & mask)? '1' : '0', port);
}
return 1;
}
SCM
scm_i_bitvector_equal_p (SCM vec1, SCM vec2)
{
size_t bit_len = BITVECTOR_LENGTH (vec1);
size_t word_len = (bit_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - bit_len);
scm_t_uint32 *bits1 = BITVECTOR_BITS (vec1);
scm_t_uint32 *bits2 = BITVECTOR_BITS (vec2);
/* compare lengths */
if (BITVECTOR_LENGTH (vec2) != bit_len)
return SCM_BOOL_F;
/* avoid underflow in word_len-1 below. */
if (bit_len == 0)
return SCM_BOOL_T;
/* compare full words */
if (memcmp (bits1, bits2, sizeof (scm_t_uint32) * (word_len-1)))
return SCM_BOOL_F;
/* compare partial last words */
if ((bits1[word_len-1] & last_mask) != (bits2[word_len-1] & last_mask))
return SCM_BOOL_F;
return SCM_BOOL_T;
}
int
scm_is_bitvector (SCM vec)
{
return IS_BITVECTOR (vec);
}
SCM_DEFINE (scm_bitvector_p, "bitvector?", 1, 0, 0,
(SCM obj),
"Return @code{#t} when @var{obj} is a bitvector, else\n"
"return @code{#f}.")
#define FUNC_NAME s_scm_bitvector_p
{
return scm_from_bool (scm_is_bitvector (obj));
}
#undef FUNC_NAME
SCM
scm_c_make_bitvector (size_t len, SCM fill)
{
size_t word_len = (len + 31) / 32;
scm_t_uint32 *bits;
SCM res;
bits = scm_gc_malloc_pointerless (sizeof (scm_t_uint32) * word_len,
"bitvector");
res = scm_double_cell (scm_tc7_bitvector, len, (scm_t_bits)bits, 0);
if (!SCM_UNBNDP (fill))
scm_bitvector_fill_x (res, fill);
else
memset (bits, 0, sizeof (scm_t_uint32) * word_len);
return res;
}
SCM_DEFINE (scm_make_bitvector, "make-bitvector", 1, 1, 0,
(SCM len, SCM fill),
"Create a new bitvector of length @var{len} and\n"
"optionally initialize all elements to @var{fill}.")
#define FUNC_NAME s_scm_make_bitvector
{
return scm_c_make_bitvector (scm_to_size_t (len), fill);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector, "bitvector", 0, 0, 1,
(SCM bits),
"Create a new bitvector with the arguments as elements.")
#define FUNC_NAME s_scm_bitvector
{
return scm_list_to_bitvector (bits);
}
#undef FUNC_NAME
size_t
scm_c_bitvector_length (SCM vec)
{
if (!IS_BITVECTOR (vec))
scm_wrong_type_arg_msg (NULL, 0, vec, "bitvector");
return BITVECTOR_LENGTH (vec);
}
SCM_DEFINE (scm_bitvector_length, "bitvector-length", 1, 0, 0,
(SCM vec),
"Return the length of the bitvector @var{vec}.")
#define FUNC_NAME s_scm_bitvector_length
{
return scm_from_size_t (scm_c_bitvector_length (vec));
}
#undef FUNC_NAME
const scm_t_uint32 *
scm_array_handle_bit_elements (scm_t_array_handle *h)
{
if (h->element_type != SCM_ARRAY_ELEMENT_TYPE_BIT)
scm_wrong_type_arg_msg (NULL, 0, h->array, "bit array");
return ((const scm_t_uint32 *) h->elements) + h->base/32;
}
scm_t_uint32 *
scm_array_handle_bit_writable_elements (scm_t_array_handle *h)
{
if (h->writable_elements != h->elements)
scm_wrong_type_arg_msg (NULL, 0, h->array, "mutable bit array");
return (scm_t_uint32 *) scm_array_handle_bit_elements (h);
}
size_t
scm_array_handle_bit_elements_offset (scm_t_array_handle *h)
{
return h->base % 32;
}
const scm_t_uint32 *
scm_bitvector_elements (SCM vec,
scm_t_array_handle *h,
size_t *offp,
size_t *lenp,
ssize_t *incp)
{
scm_generalized_vector_get_handle (vec, h);
if (offp)
{
scm_t_array_dim *dim = scm_array_handle_dims (h);
*offp = scm_array_handle_bit_elements_offset (h);
*lenp = dim->ubnd - dim->lbnd + 1;
*incp = dim->inc;
}
return scm_array_handle_bit_elements (h);
}
scm_t_uint32 *
scm_bitvector_writable_elements (SCM vec,
scm_t_array_handle *h,
size_t *offp,
size_t *lenp,
ssize_t *incp)
{
const scm_t_uint32 *ret = scm_bitvector_elements (vec, h, offp, lenp, incp);
if (h->writable_elements != h->elements)
scm_wrong_type_arg_msg (NULL, 0, h->array, "mutable bit array");
return (scm_t_uint32 *) ret;
}
SCM
scm_c_bitvector_ref (SCM vec, size_t idx)
{
scm_t_array_handle handle;
const scm_t_uint32 *bits;
if (IS_BITVECTOR (vec))
{
if (idx >= BITVECTOR_LENGTH (vec))
scm_out_of_range (NULL, scm_from_size_t (idx));
bits = BITVECTOR_BITS(vec);
return scm_from_bool (bits[idx/32] & (1L << (idx%32)));
}
else
{
SCM res;
size_t len, off;
ssize_t inc;
bits = scm_bitvector_elements (vec, &handle, &off, &len, &inc);
if (idx >= len)
scm_out_of_range (NULL, scm_from_size_t (idx));
idx = idx*inc + off;
res = scm_from_bool (bits[idx/32] & (1L << (idx%32)));
scm_array_handle_release (&handle);
return res;
}
}
SCM_DEFINE (scm_bitvector_ref, "bitvector-ref", 2, 0, 0,
(SCM vec, SCM idx),
"Return the element at index @var{idx} of the bitvector\n"
"@var{vec}.")
#define FUNC_NAME s_scm_bitvector_ref
{
return scm_c_bitvector_ref (vec, scm_to_size_t (idx));
}
#undef FUNC_NAME
void
scm_c_bitvector_set_x (SCM vec, size_t idx, SCM val)
{
scm_t_array_handle handle;
scm_t_uint32 *bits, mask;
if (IS_MUTABLE_BITVECTOR (vec))
{
if (idx >= BITVECTOR_LENGTH (vec))
scm_out_of_range (NULL, scm_from_size_t (idx));
bits = BITVECTOR_BITS(vec);
}
else
{
size_t len, off;
ssize_t inc;
bits = scm_bitvector_writable_elements (vec, &handle, &off, &len, &inc);
if (idx >= len)
scm_out_of_range (NULL, scm_from_size_t (idx));
idx = idx*inc + off;
}
mask = 1L << (idx%32);
if (scm_is_true (val))
bits[idx/32] |= mask;
else
bits[idx/32] &= ~mask;
if (!IS_MUTABLE_BITVECTOR (vec))
scm_array_handle_release (&handle);
}
SCM_DEFINE (scm_bitvector_set_x, "bitvector-set!", 3, 0, 0,
(SCM vec, SCM idx, SCM val),
"Set the element at index @var{idx} of the bitvector\n"
"@var{vec} when @var{val} is true, else clear it.")
#define FUNC_NAME s_scm_bitvector_set_x
{
scm_c_bitvector_set_x (vec, scm_to_size_t (idx), val);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector_fill_x, "bitvector-fill!", 2, 0, 0,
(SCM vec, SCM val),
"Set all elements of the bitvector\n"
"@var{vec} when @var{val} is true, else clear them.")
#define FUNC_NAME s_scm_bitvector_fill_x
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
scm_t_uint32 *bits;
bits = scm_bitvector_writable_elements (vec, &handle,
&off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
if (scm_is_true (val))
{
memset (bits, 0xFF, sizeof(scm_t_uint32)*(word_len-1));
bits[word_len-1] |= last_mask;
}
else
{
memset (bits, 0x00, sizeof(scm_t_uint32)*(word_len-1));
bits[word_len-1] &= ~last_mask;
}
}
else
{
size_t i;
for (i = 0; i < len; i++)
scm_array_handle_set (&handle, i*inc, val);
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_list_to_bitvector, "list->bitvector", 1, 0, 0,
(SCM list),
"Return a new bitvector initialized with the elements\n"
"of @var{list}.")
#define FUNC_NAME s_scm_list_to_bitvector
{
size_t bit_len = scm_to_size_t (scm_length (list));
SCM vec = scm_c_make_bitvector (bit_len, SCM_UNDEFINED);
size_t word_len = (bit_len+31)/32;
scm_t_array_handle handle;
scm_t_uint32 *bits = scm_bitvector_writable_elements (vec, &handle,
NULL, NULL, NULL);
size_t i, j;
for (i = 0; i < word_len && scm_is_pair (list); i++, bit_len -= 32)
{
scm_t_uint32 mask = 1;
bits[i] = 0;
for (j = 0; j < 32 && j < bit_len;
j++, mask <<= 1, list = SCM_CDR (list))
if (scm_is_true (SCM_CAR (list)))
bits[i] |= mask;
}
scm_array_handle_release (&handle);
return vec;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bitvector_to_list, "bitvector->list", 1, 0, 0,
(SCM vec),
"Return a new list initialized with the elements\n"
"of the bitvector @var{vec}.")
#define FUNC_NAME s_scm_bitvector_to_list
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
const scm_t_uint32 *bits;
SCM res = SCM_EOL;
bits = scm_bitvector_elements (vec, &handle, &off, &len, &inc);
if (off == 0 && inc == 1)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
size_t i, j;
for (i = 0; i < word_len; i++, len -= 32)
{
scm_t_uint32 mask = 1;
for (j = 0; j < 32 && j < len; j++, mask <<= 1)
res = scm_cons ((bits[i] & mask)? SCM_BOOL_T : SCM_BOOL_F, res);
}
}
else
{
size_t i;
for (i = 0; i < len; i++)
res = scm_cons (scm_array_handle_ref (&handle, i*inc), res);
}
scm_array_handle_release (&handle);
return scm_reverse_x (res, SCM_EOL);
}
#undef FUNC_NAME
/* From mmix-arith.w by Knuth.
Here's a fun way to count the number of bits in a tetrabyte.
[This classical trick is called the ``Gillies--Miller method for
sideways addition'' in {\sl The Preparation of Programs for an
Electronic Digital Computer\/} by Wilkes, Wheeler, and Gill, second
edition (Reading, Mass.:\ Addison--Wesley, 1957), 191--193. Some of
the tricks used here were suggested by Balbir Singh, Peter
Rossmanith, and Stefan Schwoon.]
*/
static size_t
count_ones (scm_t_uint32 x)
{
x=x-((x>>1)&0x55555555);
x=(x&0x33333333)+((x>>2)&0x33333333);
x=(x+(x>>4))&0x0f0f0f0f;
x=x+(x>>8);
return (x+(x>>16)) & 0xff;
}
SCM_DEFINE (scm_bit_count, "bit-count", 2, 0, 0,
(SCM b, SCM bitvector),
"Return the number of occurrences of the boolean @var{b} in\n"
"@var{bitvector}.")
#define FUNC_NAME s_scm_bit_count
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
const scm_t_uint32 *bits;
int bit = scm_to_bool (b);
size_t count = 0;
bits = scm_bitvector_elements (bitvector, &handle, &off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
/* the usual case
*/
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t i;
for (i = 0; i < word_len-1; i++)
count += count_ones (bits[i]);
count += count_ones (bits[i] & last_mask);
}
else
{
size_t i;
for (i = 0; i < len; i++)
if (scm_is_true (scm_array_handle_ref (&handle, i*inc)))
count++;
}
scm_array_handle_release (&handle);
return scm_from_size_t (bit? count : len-count);
}
#undef FUNC_NAME
/* returns 32 for x == 0.
*/
static size_t
find_first_one (scm_t_uint32 x)
{
size_t pos = 0;
/* do a binary search in x. */
if ((x & 0xFFFF) == 0)
x >>= 16, pos += 16;
if ((x & 0xFF) == 0)
x >>= 8, pos += 8;
if ((x & 0xF) == 0)
x >>= 4, pos += 4;
if ((x & 0x3) == 0)
x >>= 2, pos += 2;
if ((x & 0x1) == 0)
pos += 1;
return pos;
}
SCM_DEFINE (scm_bit_position, "bit-position", 3, 0, 0,
(SCM item, SCM v, SCM k),
"Return the index of the first occurrence of @var{item} in bit\n"
"vector @var{v}, starting from @var{k}. If there is no\n"
"@var{item} entry between @var{k} and the end of\n"
"@var{v}, then return @code{#f}. For example,\n"
"\n"
"@example\n"
"(bit-position #t #*000101 0) @result{} 3\n"
"(bit-position #f #*0001111 3) @result{} #f\n"
"@end example")
#define FUNC_NAME s_scm_bit_position
{
scm_t_array_handle handle;
size_t off, len, first_bit;
ssize_t inc;
const scm_t_uint32 *bits;
int bit = scm_to_bool (item);
SCM res = SCM_BOOL_F;
bits = scm_bitvector_elements (v, &handle, &off, &len, &inc);
first_bit = scm_to_unsigned_integer (k, 0, len);
if (off == 0 && inc == 1 && len > 0)
{
size_t i, word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t first_word = first_bit / 32;
scm_t_uint32 first_mask =
((scm_t_uint32)-1) << (first_bit - 32*first_word);
scm_t_uint32 w;
for (i = first_word; i < word_len; i++)
{
w = (bit? bits[i] : ~bits[i]);
if (i == first_word)
w &= first_mask;
if (i == word_len-1)
w &= last_mask;
if (w)
{
res = scm_from_size_t (32*i + find_first_one (w));
break;
}
}
}
else
{
size_t i;
for (i = first_bit; i < len; i++)
{
SCM elt = scm_array_handle_ref (&handle, i*inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
{
res = scm_from_size_t (i);
break;
}
}
}
scm_array_handle_release (&handle);
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_set_star_x, "bit-set*!", 3, 0, 0,
(SCM v, SCM kv, SCM obj),
"Set entries of bit vector @var{v} to @var{obj}, with @var{kv}\n"
"selecting the entries to change. The return value is\n"
"unspecified.\n"
"\n"
"If @var{kv} is a bit vector, then those entries where it has\n"
"@code{#t} are the ones in @var{v} which are set to @var{obj}.\n"
"@var{v} must be at least as long as @var{kv}. When @var{obj}\n"
"is @code{#t} it's like @var{kv} is OR'ed into @var{v}. Or when\n"
"@var{obj} is @code{#f} it can be seen as an ANDNOT.\n"
"\n"
"@example\n"
"(define bv #*01000010)\n"
"(bit-set*! bv #*10010001 #t)\n"
"bv\n"
"@result{} #*11010011\n"
"@end example\n"
"\n"
"If @var{kv} is a u32vector, then its elements are\n"
"indices into @var{v} which are set to @var{obj}.\n"
"\n"
"@example\n"
"(define bv #*01000010)\n"
"(bit-set*! bv #u32(5 2 7) #t)\n"
"bv\n"
"@result{} #*01100111\n"
"@end example")
#define FUNC_NAME s_scm_bit_set_star_x
{
scm_t_array_handle v_handle;
size_t v_off, v_len;
ssize_t v_inc;
scm_t_uint32 *v_bits;
int bit;
/* Validate that OBJ is a boolean so this is done even if we don't
need BIT.
*/
bit = scm_to_bool (obj);
v_bits = scm_bitvector_writable_elements (v, &v_handle,
&v_off, &v_len, &v_inc);
if (scm_is_bitvector (kv))
{
scm_t_array_handle kv_handle;
size_t kv_off, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_bits;
kv_bits = scm_bitvector_elements (kv, &kv_handle,
&kv_off, &kv_len, &kv_inc);
if (v_len < kv_len)
scm_misc_error (NULL,
"bit vectors must have equal length",
SCM_EOL);
if (v_off == 0 && v_inc == 1 && kv_off == 0 && kv_inc == 1 && kv_len > 0)
{
size_t word_len = (kv_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - kv_len);
size_t i;
if (bit == 0)
{
for (i = 0; i < word_len-1; i++)
v_bits[i] &= ~kv_bits[i];
v_bits[i] &= ~(kv_bits[i] & last_mask);
}
else
{
for (i = 0; i < word_len-1; i++)
v_bits[i] |= kv_bits[i];
v_bits[i] |= kv_bits[i] & last_mask;
}
}
else
{
size_t i;
for (i = 0; i < kv_len; i++)
if (scm_is_true (scm_array_handle_ref (&kv_handle, i*kv_inc)))
scm_array_handle_set (&v_handle, i*v_inc, obj);
}
scm_array_handle_release (&kv_handle);
}
else if (scm_is_true (scm_u32vector_p (kv)))
{
scm_t_array_handle kv_handle;
size_t i, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_elts;
kv_elts = scm_u32vector_elements (kv, &kv_handle, &kv_len, &kv_inc);
for (i = 0; i < kv_len; i++, kv_elts += kv_inc)
scm_array_handle_set (&v_handle, (*kv_elts)*v_inc, obj);
scm_array_handle_release (&kv_handle);
}
else
scm_wrong_type_arg_msg (NULL, 0, kv, "bitvector or u32vector");
scm_array_handle_release (&v_handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_count_star, "bit-count*", 3, 0, 0,
(SCM v, SCM kv, SCM obj),
"Return a count of how many entries in bit vector @var{v} are\n"
"equal to @var{obj}, with @var{kv} selecting the entries to\n"
"consider.\n"
"\n"
"If @var{kv} is a bit vector, then those entries where it has\n"
"@code{#t} are the ones in @var{v} which are considered.\n"
"@var{kv} and @var{v} must be the same length.\n"
"\n"
"If @var{kv} is a u32vector, then it contains\n"
"the indexes in @var{v} to consider.\n"
"\n"
"For example,\n"
"\n"
"@example\n"
"(bit-count* #*01110111 #*11001101 #t) @result{} 3\n"
"(bit-count* #*01110111 #u32(7 0 4) #f) @result{} 2\n"
"@end example")
#define FUNC_NAME s_scm_bit_count_star
{
scm_t_array_handle v_handle;
size_t v_off, v_len;
ssize_t v_inc;
const scm_t_uint32 *v_bits;
size_t count = 0;
int bit;
/* Validate that OBJ is a boolean so this is done even if we don't
need BIT.
*/
bit = scm_to_bool (obj);
v_bits = scm_bitvector_elements (v, &v_handle,
&v_off, &v_len, &v_inc);
if (scm_is_bitvector (kv))
{
scm_t_array_handle kv_handle;
size_t kv_off, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_bits;
kv_bits = scm_bitvector_elements (kv, &kv_handle,
&kv_off, &kv_len, &kv_inc);
if (v_len != kv_len)
scm_misc_error (NULL,
"bit vectors must have equal length",
SCM_EOL);
if (v_off == 0 && v_inc == 1 && kv_off == 0 && kv_inc == 1 && kv_len > 0)
{
size_t i, word_len = (kv_len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - kv_len);
scm_t_uint32 xor_mask = bit? 0 : ((scm_t_uint32)-1);
for (i = 0; i < word_len-1; i++)
count += count_ones ((v_bits[i]^xor_mask) & kv_bits[i]);
count += count_ones ((v_bits[i]^xor_mask) & kv_bits[i] & last_mask);
}
else
{
size_t i;
for (i = 0; i < kv_len; i++)
if (scm_is_true (scm_array_handle_ref (&kv_handle, i)))
{
SCM elt = scm_array_handle_ref (&v_handle, i*v_inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
count++;
}
}
scm_array_handle_release (&kv_handle);
}
else if (scm_is_true (scm_u32vector_p (kv)))
{
scm_t_array_handle kv_handle;
size_t i, kv_len;
ssize_t kv_inc;
const scm_t_uint32 *kv_elts;
kv_elts = scm_u32vector_elements (kv, &kv_handle, &kv_len, &kv_inc);
for (i = 0; i < kv_len; i++, kv_elts += kv_inc)
{
SCM elt = scm_array_handle_ref (&v_handle, (*kv_elts)*v_inc);
if ((bit && scm_is_true (elt)) || (!bit && scm_is_false (elt)))
count++;
}
scm_array_handle_release (&kv_handle);
}
else
scm_wrong_type_arg_msg (NULL, 0, kv, "bitvector or u32vector");
scm_array_handle_release (&v_handle);
return scm_from_size_t (count);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bit_invert_x, "bit-invert!", 1, 0, 0,
(SCM v),
"Modify the bit vector @var{v} by replacing each element with\n"
"its negation.")
#define FUNC_NAME s_scm_bit_invert_x
{
scm_t_array_handle handle;
size_t off, len;
ssize_t inc;
scm_t_uint32 *bits;
bits = scm_bitvector_writable_elements (v, &handle, &off, &len, &inc);
if (off == 0 && inc == 1 && len > 0)
{
size_t word_len = (len + 31) / 32;
scm_t_uint32 last_mask = ((scm_t_uint32)-1) >> (32*word_len - len);
size_t i;
for (i = 0; i < word_len-1; i++)
bits[i] = ~bits[i];
bits[i] = bits[i] ^ last_mask;
}
else
{
size_t i;
for (i = 0; i < len; i++)
scm_array_handle_set (&handle, i*inc,
scm_not (scm_array_handle_ref (&handle, i*inc)));
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM
scm_istr2bve (SCM str)
{
scm_t_array_handle handle;
size_t len = scm_i_string_length (str);
SCM vec = scm_c_make_bitvector (len, SCM_UNDEFINED);
SCM res = vec;
scm_t_uint32 mask;
size_t k, j;
const char *c_str;
scm_t_uint32 *data;
data = scm_bitvector_writable_elements (vec, &handle, NULL, NULL, NULL);
c_str = scm_i_string_chars (str);
for (k = 0; k < (len + 31) / 32; k++)
{
data[k] = 0L;
j = len - k * 32;
if (j > 32)
j = 32;
for (mask = 1L; j--; mask <<= 1)
switch (*c_str++)
{
case '0':
break;
case '1':
data[k] |= mask;
break;
default:
res = SCM_BOOL_F;
goto exit;
}
}
exit:
scm_array_handle_release (&handle);
scm_remember_upto_here_1 (str);
return res;
}
SCM_VECTOR_IMPLEMENTATION (SCM_ARRAY_ELEMENT_TYPE_BIT, scm_make_bitvector)
void
scm_init_bitvectors ()
{
#include "libguile/bitvectors.x"
}
/*
Local Variables:
c-file-style: "gnu"
End:
*/
|