{- Ki-Wing Ho and Eric Fox Computer Science 429b Professor Hudak Final Project: LOGO Interpreter -} ------------------------------------------------------------------------------- module REPLoop where {- REPLoop has two main parts: the first part (function logo) sets up the graphics window, prints a welcome message, initializes the variable and procedure environments and the turtle, accepts and lines's the user input, runs the read-eval-print loop (part two), and then closes the graphics window and exists; the second part (function repLoop) lexes and parses each command, prints an error message if there was a syntax error and evaluates (or tries to) if there wasn't, and then either prints the value or an error message or exits if the value returnd by the evaluator is "GoodBye". -} import Lexer import Parser import Evaluator import Xlib demo = main main = getEnv "DISPLAY" exit $ \ host -> xHandleError ( \ (XError msg) -> appendChan stdout msg exit done) $ logo host logo :: String -> IO () logo host = xOpenDisplay host `thenIO` \ display -> let (screen:_) = xDisplayRoots display fg_color = xScreenWhitePixel screen bg_color = xScreenBlackPixel screen root = xScreenRoot screen in xCreateWindow root (XRect 100 100 500 500) [XWinBackground bg_color, XWinBackingStore XAlwaysBackStore] `thenIO` \ graphWindow -> xSetWmName graphWindow "Logo" `thenIO` \ () -> xSetWmIconName graphWindow "Logo" `thenIO` \ () -> xMapWindow graphWindow `thenIO` \ () -> xCreateGcontext (XDrawWindow root) [XGCBackground bg_color, XGCForeground fg_color] `thenIO` \ graphContext -> xDisplayForceOutput display `thenIO` \ () -> appendChan stdout ("Welcome to LOGO!\n" ++ prompt) exit $ readChan stdin exit $ \userInput -> repLoop (varEnvsInit,procEnvsInit,turtleInit) ((lines userInput,Lexer), (graphWindow,display,graphContext,bg_color,fg_color)) $ xCloseDisplay display -- Initial Environments -- varEnvsInit :: VarsType varEnvsInit = [[("GOODBYE",GoodBye)]] -- all user-defined commands must have dummy entries procEnvsInit :: ProcsType procEnvsInit = (map (makeFakeProc) [("XCOR",0),("YCOR",0),("GETANGLE",0),("GETPEN",0), ("GETTURTLE",0), ("SUM",2),("DIFFERENCE",2),("PRODUCT",2),("MOD",2), ("DIV",2),("POWER",2), ("AND",2),("OR",2),("NOT",1), ("WORDP",1),("LISTP",1),("NUMBERP",1),("GREATER",2), ("EQUAL",2),("LESS",2), ("BUTFIRST",1),("FPUT",2),("CONCAT",2), ("FIRST",1),("LAST",1),("WORD",-2),("LIST",-2), ("SENTENCE",-2), ("USE",1)]):[] turtleInit :: TurtleType turtleInit = (500 `div` 2,500 `div` 2,90,True,False) -- makes a dummy procedure makeFakeProc :: (NameType , Int) -> (NameType , ProcType) makeFakeProc (name,num) = (name,(makeArgs num,[])) makeArgs :: Int -> [NameType] makeArgs n | n > 0 = "" : makeArgs (n-1) | otherwise = [] -- keep running Read-Eval-Print Loop until user types GoodBye -- repLoop keeps running until user types "GoodBye", alternately -- lexing, parsing, and evaluating each command -- after a syntax error, the lex state is reset repLoop :: EnvsType -> StateType -> IO () -> IO () repLoop e1 (inS1,gs1) end = let fail1 msg (is1,ls1) = errorOutput msg $ repLoop e1 ((is1,Lexer),gs1) end -- parser fail continuation doesn't contain graphics state fail2 msg ((is2,ls2),gs2) = errorOutput msg $ repLoop e1 ((is2,Lexer),gs1) end -- evaluator fail continuation does contain graphics state in parse [] inS1 fail1 $ \a ts inS2 -> if (null ts) then evaluate e1 a (inS2,gs1) fail2 $ \v e2 ((is3,ls3),gs3) -> output v end $ repLoop e2 ((is3,Lexer),gs3) end else fail1 "Syntax error: expected end of line" inS2 -- repLoop will still be rerun -- print error message errorOutput :: String -> IO () -> IO () errorOutput error = appendChan stdout (error ++ prompt) abort -- print expression value, exiting if GoodBye output :: Value -> IO () -> IO () -> IO () output GoodBye end succ = appendChan stdout "\nGoodbye!\n"abort end output v end succ = appendChan stdout ((valueToString v) ++ prompt) abort succ prompt :: String prompt = "\nLOGO> " ------------------------------------------------------------------------------- module Evaluator where {- Evaluator takes an Abstract Syntax Tree and evaluates it in the current environment, returning both the resultant value and the new environment (as well as the updated state, of which only the user input can actually be changed in the evaluator). A value can be of one of six types: integer, string, list, and boolean, as well as null (for commands which don't return anything and newly-declared local variables), and goodbye, which allows logo to quit. The environment consists of three parts. The variable environment and the procedure environment are separate (so that a name can refer both to a variable and a procedure: Logo syntax is such that there is never any ambiguity) are both lists of name-value association lists. Each association list representes a "local environment", with each successive one being more "global", so that the last environment in the list is the global environment. Local environments are produced by user-function invocations and removed at the end of those invocations. -} import Lexer import Parser import Xlib type NameType = [Char] type WordType = [Char] type Error = [Char] type StateType = (InputState , GraphicsState) type GraphicsState = (XWindow , XDisplay , XGcontext , XPixel , XPixel) type EnvsType = (VarsType,ProcsType,TurtleType) type VarsType = [[(NameType , Value)]] type ProcsType = [[(NameType , ProcType)]] type TurtleType = (Int , Int , Int , Bool , Bool) type ProcType = ([NameType] , ClauseType) data Value = Null | Num Int | Word WordType | List ListType | Boolean Bool | GoodBye deriving Text data ListType = NullList | Value :* ListType deriving Text type EvalFailType = Error -> StateType -> IO () type EvalSuccType = Value -> EnvsType -> StateType -> IO () type EvalResType = StateType -> EvalFailType -> EvalSuccType -> IO () type EvaluateType = EnvsType -> AST -> EvalResType evaluate :: EvaluateType evaluate (vs,p:ps,ttl) (To newName newProc) ss fail succ = succ Null (vs,((newName,newProc):p):ps,ttl) ss -- procedures evaluate e (Read) ((i:is,ls),gs) fail succ = succ (List (makeReadList (lexerReadLine i))) e ((is,ls),gs) -- user input evaluate e1 (Print [a]) ss fail succ = evaluate e1 a ss fail $ \v e2 ss2 -> appendChan stdout ((valueToString v)++"\n") abort $ succ Null e2 ss2 -- user output evaluate e (Argument (Val (Word n))) ss fail succ = lookup e n ss fail $ \v -> succ v e ss -- variable reference evaluate e (Argument (Val v)) ss fail succ = succ v e ss -- constant evaluate e (Argument (QuotedWordArg n)) ss fail succ = succ (Word n) e ss -- string constant evaluate (v:vs,ps,ttl) (Local n) ss fail succ = succ Null (((n,Null):v):vs,ps,ttl) ss -- local variable declaraion -- local returns null, and sets the new local variable to null also evaluate e (ParseList l) ss fail succ = succ (List l) e ss -- lists (also constant) evaluate e (Loop l cond insts) ss fail succ = evalLoop l e cond insts ss fail succ -- loops evaluate e (If cond thens elses) ss fail succ = evalIf e cond thens elses ss fail succ -- if-then[-eles] conditionals evaluate e1 (Command name as1) ss fail succ | ((na == length as1) || (na == -2)) = evalArgs e1 as1 ss fail $ \e2 as2 ss2 -> apply name as2 e2 ss2 fail $ \v e3 ss3 -> succ v e3 ss3 | na == -1 = fail ("Function does not exist: " ++ name) ss | otherwise = fail ("Wrong number of arguments to " ++ name) ss where na = numArgs e1 name -- function applications evaluate e1 (Make n a) ss fail succ = evaluate e1 a ss fail $ \v e2 ss2 -> update e2 n v $ \e3 -> succ v e3 ss2 -- assignment statements, which return the assigned value evaluate e1 (Graphics name as1) ss fail succ = evalArgs e1 as1 ss fail $ \e2 as2 ss2 -> doGraphics name as2 e2 ss2 fail $ \e3 ss3 -> succ Null e3 ss3 -- side-effecting graphics statements, which all return null -- end evaluate -- evaluate a list of actual parameters, returning the corresponding -- list of values evalArgs :: EnvsType -> ParseArgs -> StateType -> EvalFailType -> (EnvsType -> EvalArgs -> StateType -> IO ()) -> IO () evalArgs e [] ss fail succ = succ e [] ss evalArgs e1 (a:as1) ss fail succ = evaluate e1 a ss fail $ \v e2 ss2 -> evalArgs e2 as1 ss2 fail $ \e3 as2 ss3 -> succ e3 (v:as2) ss3 -- evaluate a list of commands, returning the value of the last one evalClause :: EnvsType -> ClauseType -> EvalResType evalClause e [] ss fail succ = succ Null e ss evalClause e (a:[]) ss fail succ = evaluate e a ss fail succ evalClause e1 (a:as) ss fail succ = evaluate e1 a ss fail $ \v e2 ss2 -> evalClause e2 as ss2 fail succ -- convert a lexed user-input list to a list constant makeReadList :: [WordType] -> ListType makeReadList [] = NullList makeReadList (w:ws) = (Word w) :* (makeReadList ws) -- Variable routines -- -- look up a variable reference in the variable environment -- search the most-local environments first -- return an error if not found lookup :: EnvsType -> NameType -> StateType -> EvalFailType -> (Value -> IO ()) -> IO () lookup ([],ps,ttl) name ss fail succ = fail ("Unbound variable: " ++ name) ss lookup ([]:vss,ps,ttl) name ss fail succ = lookup (vss,ps,ttl) name ss fail succ lookup (((n,v):vs):vss,ps,ttl) name ss fail succ | n == name = succ v | otherwise = lookup (vs:vss,ps,ttl) name ss fail succ -- update the variable environment -- replace the most-local occurrance first; if none are found, -- create a new variable and place it in the most-global environment update :: EnvsType -> NameType -> Value -> (EnvsType -> IO ()) -> IO () update ([]:[],ps,ttl) name value succ = succ (((name,value):[]):[],ps,ttl) update ([]:vss,ps,ttl) name value succ = update (vss,ps,ttl) name value $ \(vss2,ps2,ttl2) -> succ ([]:vss2,ps2,ttl2) update (((n,v):vs):vss,ps,ttl) name value succ | n == name = succ (((n,value):vs):vss,ps,ttl) | otherwise = update (vs:vss,ps,ttl) name value $ \(vs2:vss2,ps2,ttl2) -> succ (((n,v):vs2):vss2,ps2,ttl2) -- Control structures -- -- evaluate loops evalLoop :: LoopType -> EnvsType -> ConditionType -> ClauseType -> EvalResType evalLoop Do = evalDo evalLoop While = evalWhile evalLoop Repeat = evalRepeat -- evaluate while statements -- loop semantics: evaluate condition; if true, evaluate clause, then loop -- while returns null evalWhile :: EnvsType -> ConditionType -> ClauseType -> EvalResType evalWhile e1 cond insts ss fail succ = evalCond e1 cond ss fail $ \b e2 ss2 -> if b then evalClause e2 insts ss2 fail $ \v e3 ss3 -> evalWhile e3 cond insts ss3 fail succ else succ Null e2 ss2 -- evaluate do-while statements -- loop semantics: evaluate clause then evaluate condition; if true, loop evalDo :: EnvsType -> ConditionType -> ClauseType -> EvalResType evalDo e1 cond insts ss fail succ = evalClause e1 insts ss fail $ \v e2 ss2 -> evalCond e2 cond ss2 fail $ \b e3 ss3 -> if b then evalDo e3 cond insts ss3 fail succ else succ Null e3 ss3 -- evaluate repeat statements -- loop semantics: evaluate loop number as n; evaluate clause n times -- evaluate loop number and print error if it is negative or not an integer evalRepeat :: EnvsType -> ConditionType -> ClauseType -> EvalResType evalRepeat e1 cond insts ss fail succ = evaluate e1 cond ss fail $ \v e2 ss2 -> case v of Num n -> if (n >= 0) then doIterations e2 n insts ss2 fail succ else fail "Repeat: Iteration count cannot be negative" ss2 otherwise -> fail "Repeat: Invalid iteration count" ss2 -- perform loop interations: evaluate "insts" "n" times doIterations :: EnvsType -> Int -> ClauseType -> EvalResType doIterations e 0 insts ss fail succ = succ Null e ss doIterations e1 (n+1) insts ss fail succ = evalClause e1 insts ss fail $ \v e2 ss2 -> doIterations e2 n insts ss2 fail succ -- evaluates conditions and returns either true, false, or an error evalCond :: EnvsType -> ConditionType -> StateType -> EvalFailType -> (Bool -> EnvsType -> StateType -> IO ()) -> IO () evalCond e1 cond ss fail succ = evaluate e1 cond ss fail $ \v e2 ss2 -> case v of Boolean b -> succ b e2 ss2 otherwise -> fail "Invalid condition" ss2 -- evaluate if-then[-else] statements evalIf :: EnvsType -> ConditionType -> ClauseType -> ClauseType -> EvalResType evalIf e1 cond thens elses ss fail succ = evalCond e1 cond ss fail $ \b e2 ss2 -> if b then evalClause e2 thens ss2 fail succ else evalClause e2 elses ss2 fail succ -- Function application -- -- returns the number of arguments to a user-defined or built-in function -- -1 means the function wasn't found -- -2 means the function can take any number of arguments numArgs :: EnvsType -> CommandName -> Int numArgs (vs,[],ttl) name = -1 numArgs (vs,[]:pss,ttl) name = numArgs (vs,pss,ttl) name numArgs (vs,((n,(formals,body)):ps):pss,ttl) name | inList ["WORD","SENTENCE","LIST"] name = -2 | n == name = length formals | otherwise = numArgs (vs,ps:pss,ttl) name -- apply a function to its arguments -- mostly just decides if it's user-defined or built-in, then dispatches apply :: CommandName -> EvalArgs -> EnvsType -> EvalResType apply n as e ss fail succ | isBuiltIn n = applyPrimProc n as e ss fail succ | otherwise = applyUserProc (getProc e n) as e ss fail succ -- returns procedure "name" from the procedure environment -- searches most-local environments first -- precondition: procedure does exist somewhere getProc :: EnvsType -> CommandName -> ProcType getProc (vss,[]:pss,ttl) name = getProc (vss,pss,ttl) name getProc (vs,((n,p):ps):pss,ttl) name | n == name = p | otherwise = getProc (vs,ps:pss,ttl) name -- apply user function: -- bind formal parameters -- create local enviroments -- evaluate body of function -- destroy local environments -- return value of body applyUserProc :: ProcType -> EvalArgs -> EnvsType -> EvalResType applyUserProc (formals,body) actuals e1 ss fail succ = bind formals actuals e1 $ \e2 -> evalClause e2 body ss fail $ \v (vs:vss,ps:pss,ts) ss2 -> succ v (vss,pss,ts) ss2 -- bind formal parameters to actuals in local environment bind :: [NameType] -> EvalArgs -> EnvsType -> (EnvsType -> IO ()) -> IO () bind formals actuals (vss,pss,ttl) succ = succ ((zip formals actuals):vss,[]:pss,ttl) -- Built-in functions -- -- returns true for built-in functions isBuiltIn :: CommandName -> Bool isBuiltIn = inList ["XCOR","YCOR","GETANGLE","GETPEN","GETTURTLE", "SUM","DIFFERENCE","PRODUCT","MOD","DIV","POWER", "AND","OR","NOT", "WORDP","LISTP","NUMBERP","GREATER","EQUAL","LESS", "BUTFIRST","FPUT","CONCAT", "FIRST","LAST","WORD","LIST","SENTENCE", "USE"] -- applies a built-in function to its arguments applyPrimProc :: CommandName -> [Value] -> EnvsType -> EvalResType applyPrimProc "XCOR" [] (vs,ps,(x,y,a,p,t)) ss fail succ = succ (Num x) (vs,ps,(x,y,a,p,t)) ss applyPrimProc "YCOR" [] (vs,ps,(x,y,a,p,t)) ss fail succ = succ (Num y) (vs,ps,(x,y,a,p,t)) ss applyPrimProc "GETANGLE" [] (vs,ps,(x,y,a,p,t)) ss fail succ = succ (Num a) (vs,ps,(x,y,a,p,t)) ss applyPrimProc "GETPEN" [] (vs,ps,(x,y,a,p,t)) ss fail succ = succ (Boolean p) (vs,ps,(x,y,a,p,t)) ss applyPrimProc "GETTURTLE" [] (vs,ps,(x,y,a,p,t)) ss fail succ = succ (Boolean t) (vs,ps,(x,y,a,p,t)) ss applyPrimProc "SUM" [Num a , Num b] e ss fail succ = succ (Num (a+b)) e ss applyPrimProc "DIFFERENCE" [Num a , Num b] e ss fail succ = succ (Num (a-b)) e ss applyPrimProc "PRODUCT" [Num a , Num b] e ss fail succ = succ (Num (a*b)) e ss applyPrimProc "MOD" [Num a , Num b] e ss fail succ = succ (Num (a `mod` b)) e ss applyPrimProc "DIV" [Num a , Num b] e ss fail succ = succ (Num (a `div` b)) e ss applyPrimProc "POWER" [Num a , Num b] e ss fail succ | b >= 0 = succ (Num (a^b)) e ss | otherwise = fail ("Negative exponent: " ++ (show b)) ss applyPrimProc "AND" [Boolean a , Boolean b] e ss fail succ = succ (Boolean (a && b)) e ss applyPrimProc "OR" [Boolean a , Boolean b] e ss fail succ = succ (Boolean (a || b)) e ss applyPrimProc "NOT" [Boolean a] e ss fail succ = succ (Boolean (not a)) e ss applyPrimProc "WORDP" [Word w] e ss fail succ = succ (Boolean True) e ss applyPrimProc "WORDP" [v] e ss fail succ = succ (Boolean False) e ss applyPrimProc "NUMBERP" [Num n] e ss fail succ = succ (Boolean True) e ss applyPrimProc "NUMBERP" [v] e ss fail succ = succ (Boolean False) e ss applyPrimProc "LISTP" [List l] e ss fail succ = succ (Boolean True) e ss applyPrimProc "LISTP" [v] e ss fail succ = succ (Boolean False) e ss applyPrimProc "GREATER" [Num a , Num b] e ss fail succ = succ (Boolean (a > b)) e ss applyPrimProc "EQUAL" [Num a , Num b] e ss fail succ = succ (Boolean (a == b)) e ss applyPrimProc "EQUAL" [Word a , Word b] e ss fail succ = succ (Boolean (a == b)) e ss applyPrimProc "EQUAL" [Boolean a , Boolean b] e ss fail succ = succ (Boolean (a == b)) e ss applyPrimProc "LESS" [Num a , Num b] e ss fail succ = succ (Boolean (a < b)) e ss applyPrimProc "BUTFIRST" [Word ""] e ss fail succ = succ (Word "") e ss applyPrimProc "BUTFIRST" [Word (c:cs)] e ss fail succ = succ (Word cs) e ss applyPrimProc "BUTFIRST" [List NullList] e ss fail succ = succ (List NullList) e ss applyPrimProc "BUTFIRST" [List (v :* vs)] e ss fail succ = succ (List vs) e ss applyPrimProc "FPUT" [v , List l] e ss fail succ = succ (List (v :* l)) e ss applyPrimProc "CONCAT" [List l1 , List l2] e ss fail succ = succ (List (listConcatenate l1 l2)) e ss applyPrimProc "FIRST" [Word (c:cs)] e ss fail succ = succ (Word (c:[])) e ss applyPrimProc "FIRST" [List (v :* vs)] e ss fail succ = succ v e ss applyPrimProc "LAST" [Word (c:[])] e ss fail succ = succ (Word (c:[])) e ss applyPrimProc "LAST" [Word ""] e ss fail succ = succ Null e ss applyPrimProc "LAST" [Word (c:cs)] e ss fail succ = applyPrimProc "LAST" [(Word cs)] e ss fail succ applyPrimProc "LAST" [List (v :* NullList)] e ss fail succ = succ v e ss applyPrimProc "LAST" [List (v :* vs)] e ss fail succ = applyPrimProc "LAST" [(List vs)] e ss fail succ applyPrimProc "WORD" [] e ss fail succ = succ (Word "") e ss applyPrimProc "WORD" ((Word w):ws) e ss fail succ = applyPrimProc "WORD" ws e ss fail $ \(Word wsc) e2 ss2 -> succ (Word (w ++ wsc)) e2 ss2 applyPrimProc "LIST" (v:vs) e ss fail succ = applyPrimProc "LIST" vs e ss fail $ \(List l) e2 ss2 -> succ (List (v :* l)) e2 ss2 applyPrimProc "LIST" [] e ss fail succ = succ (List NullList) e ss applyPrimProc "SENTENCE" [] e ss fail succ = succ (List NullList) e ss applyPrimProc "SENTENCE" ((List l):[]) e ss fail succ = succ (List l) e ss applyPrimProc "SENTENCE" ((List l):vs) e ss fail succ = applyPrimProc "SENTENCE" [List l] e ss fail $ \(List s1) e2 ss2 -> applyPrimProc "SENTENCE" vs e2 ss2 fail $ \(List s2) e3 ss3 -> succ (List (listConcatenate s1 s2)) e3 ss3 applyPrimProc "SENTENCE" (v:vs) e ss fail succ = applyPrimProc "SENTENCE" vs e ss fail $ \(List ws) e2 ss2 -> succ (List (v :* ws)) e2 ss2 applyPrimProc "USE" [Word filename] e ss@((ins, ls), gs) fail succ = readFile filename (\ _ -> fail ("Can't read file: " ++ filename) ss) $ \filecontents -> useRepLoop e ((lines filecontents, Lexer), gs) (\ msg s -> fail msg ss) $ \ v e s -> succ v e ss applyPrimProc n _ _ ss fail _ = fail ("Incorrect arguments: " ++ n) ss useRepLoop :: EnvsType -> EvalResType useRepLoop e s@(([], ls), gs) fail succ = succ (Word "OK") e s useRepLoop e1 s1@(inS1,gs1) fail succ = parse [] inS1 (\ msg ins -> fail msg (ins, gs1)) $ \a ts inS2 -> if (null ts) then evaluate e1 a (inS2,gs1) fail $ \v e2 s3 -> useRepLoop e2 s3 fail succ else fail "Syntax error: expected end of line" (inS2, gs1) -- concatenates two lists listConcatenate :: ListType -> ListType -> ListType listConcatenate NullList l2 = l2 listConcatenate (v :* l1) l2 = (v :* (listConcatenate l1 l2)) -- Graphics -- type EvalArgs = [Value] type GraphEnv = (Int,Int,Int,Bool) -- evaluates side-effecting graphics functions -- note: none of them return values doGraphics :: CommandName -> EvalArgs -> EnvsType -> StateType -> EvalFailType -> (EnvsType -> StateType -> IO ()) -> IO () doGraphics "HIDETURTLE" [] (vs,ps,(x,y,a,p,t)) ss fail succ = hideTurtle x y a ss $ succ (vs,ps,(x,y,a,p,False)) ss -- hide turtle, appropriately adjust environment doGraphics "SHOWTURTLE" [] (vs,ps,(x,y,a,p,t)) ss fail succ = showTurtle x y a ss $ succ (vs,ps,(x,y,a,p,True)) ss -- show turtle, appropriately adjust environment doGraphics name as (vs,ps,(x,y,a,p,True)) ss fail succ = hideTurtle x y a ss $ moveTurtle name as (x,y,a,p) ss $ \(x2,y2,a2,p2) -> showTurtle x2 y2 a2 ss $ succ (vs,ps,(x2,y2,a2,p2,True)) ss -- executes graphics commands if turtle is shownn doGraphics name as (vs,ps,(x,y,a,p,False)) ss fail succ = moveTurtle name as (x,y,a,p) ss $ \(x2,y2,a2,p2) -> succ (vs,ps,(x2,y2,a2,p2,False)) ss -- executes graphics commands if turtle is not shown -- converts an integer to a float toFloat :: Int -> Float toFloat = fromInteger . toInteger newmod a b = let c = a `mod` b in if (c < 0) then (c + b) else c -- shows the turtle, but returns nothing showTurtle :: Int -> Int -> Int -> StateType -> IO () -> IO () showTurtle x y a (is,(graphWindow,display,graphContext,bg,fg)) succ = let dx1 = round (12 * cos (toFloat a * pi/180)) dx2 = round (4 * sin (toFloat a * pi/180)) dy1 = round (12 * sin (toFloat a * pi/180)) dy2 = round (4 * cos (toFloat a * pi/180)) in xDrawLine (XDrawWindow graphWindow) graphContext (XPoint x y) (XPoint (x-dx1-dx2) (y+dy1-dy2)) `thenIO` \ () -> xDrawLine (XDrawWindow graphWindow) graphContext (XPoint x y) (XPoint (x-dx1+dx2) (y+dy1+dy2)) `thenIO` \ () -> xDrawLine (XDrawWindow graphWindow) graphContext (XPoint (x-dx1-dx2) (y+dy1-dy2)) (XPoint (x-dx1+dx2) (y+dy1+dy2)) `thenIO` \ () -> xDisplayForceOutput display `thenIO_` succ -- hides the turtle, but returns nothing hideTurtle :: Int -> Int -> Int -> StateType -> IO () -> IO () hideTurtle x y a (is,(graphWindow,display,graphContext,bg,fg)) succ = xUpdateGcontext graphContext [XGCForeground bg] `thenIO_` (showTurtle x y a (is,(graphWindow,display,graphContext,bg,fg)) $ (xUpdateGcontext graphContext [XGCForeground fg] `thenIO_` succ)) -- performs all graphics commands that don't involve hiding/showing -- the turtle moveTurtle :: CommandName -> EvalArgs -> GraphEnv -> StateType -> (GraphEnv -> IO ()) -> IO () moveTurtle "SETXY" [Num xp,Num yp] (x,y,a,p) ss succ = succ (xp,yp,a,p) -- move the turtle forward "d" times, drawing a line if pen is down moveTurtle "FORWARD" [Num d] (x,y,a,p) (is,(graphWindow,display,graphContext,fg,bg)) succ = let xp = x + round (toFloat d * cos (toFloat a * pi/180)) yp = y - round (toFloat d * sin (toFloat a * pi/180)) in (if p then (xDrawLine (XDrawWindow graphWindow) graphContext (XPoint x y) (XPoint xp yp)) else returnIO ()) `thenIO` \ () -> xDisplayForceOutput display `thenIO` \ () -> succ (xp,yp,a,p) -- move the turtle backward "d" pixels, drawing a line if pen is down moveTurtle "BACKWARD" [Num d] (x,y,a,p) ss succ = moveTurtle "FORWARD" [Num (-d)] (x,y,a,p) ss succ -- rotate turtle to "ap" degrees from facing due east moveTurtle "SETANGLE" [Num ap] (x,y,a,p) ss succ = succ (x,y,ap,p) -- rotate turtle counterclockwise "ap" degrees moveTurtle "LEFT" [Num ap] (x,y,a,p) ss succ = succ (x,y, (a + ap) `newmod` 360 ,p) -- rotate turtle clockwise "ap" degrees moveTurtle "RIGHT" [Num ap] (x,y,a,p) ss succ = succ (x,y, (a - ap) `newmod` 360 ,p) -- pick pen up moveTurtle "PENUP" [] (x,y,a,p) ss succ = succ (x,y,a,False) -- put pen down moveTurtle "PENDOWN" [] (x,y,a,p) ss succ = succ (x,y,a,True) -- clear screen but don't otherwise alter turtle state moveTurtle "CLEARSCREEN" [] (x,y,a,p) (is,(graphWindow,display,graphContext,bg,fg)) succ = xClearArea graphWindow (XRect 0 0 500 500) True `thenIO` \() -> xDisplayForceOutput display `thenIO` \() -> succ (x,y,a,p) -- pick pen up and reset turtle moveTurtle "CLEAN" [] (x,y,a,p) (is,(graphWindow,display,graphContext,bg,fg)) succ = xClearArea graphWindow (XRect 0 0 500 500) True `thenIO` \() -> xDisplayForceOutput display `thenIO` \() -> succ (500 `div` 2,500 `div` 2,90,True) -- do nothing if arguments are incorrect moveTurtle _ _ e _ succ = succ e -- valueToString, etc. -- -- convert a value to a string valueToString :: Value -> String valueToString (Word w) = w valueToString (Num n) = show n valueToString (Boolean True) = "TRUE" valueToString (Boolean False) = "FALSE" valueToString Null = "" valueToString (List l) = "[" ++ (listToString l) ++ "]" valueToString GoodBye = "Don't play around with this variable!" -- convert a list to a string listToString :: ListType -> String listToString NullList = "" listToString (v :* NullList) = valueToString v listToString (v :* l) = (valueToString v) ++ " " ++ (listToString l) ------------------------------------------------------------------------------- module Lexer where {- Lexer takes as input a line from standard input and returns an ordered pair containing the translation of that list into tokens as well as the current state of the lexer (how many parentheses and brackets are still open). The state is necessary because some commands may take multiple lines, so a bracket (say) may be left open on one line to be closed later on. All unmatched close brackets and parentheses are treated as spaces (and therefore ignored). The method for tokenizing commands is: All words are delimited by spaces, parenthesis, or brackets. All words beginning with a double quote are returned as quoted words rather than normal words. Any character preceded by a backslash is taken as is, rather than tokenized normally. All words are translated to upper case.. The method for tokenizing user input is: All words are delimited by spaces and translated to upper case. -} import Parser import Evaluator data LexState = Lexer | LexerBracket Int LexState | LexerParen Int LexState deriving Text type LexerType = [Char] -> ([Token] , LexState) data Token = OpenBracket | CloseBracket | OpenParen | CloseParen | QuotedWord WordType | Normal WordType deriving (Text,Eq) -- call appropriate lex procedure depending upon the current lex state lexDispatch :: LexState -> LexerType lexDispatch (Lexer) = lexer lexDispatch (LexerBracket n s) = lexerBracket n s lexDispatch (LexerParen n s) = lexerParen n s -- handle commands lexer :: LexerType lexer [] = ([] , Lexer) lexer (' ':cs) = lexer cs lexer ('[':cs) = let (ts , s) = lexerBracket 1 (Lexer) cs in (OpenBracket : ts , s) lexer ('(':cs) = let (ts , s) = lexerParen 1 (Lexer) cs in (OpenParen : ts , s) lexer (')':cs) = lexer cs lexer (']':cs) = lexer cs lexer ('"':cs) = let (t , cs2) = lexerWord (isDelimiter) cs (ts , s) = lexer cs2 in ((QuotedWord (upWord t)):ts , s) lexer cs = let (t , cs2) = lexerWord (isDelimiter) cs (ts , s) = lexer cs2 in ((Normal (upWord t)):ts , s) lexerWord :: (Char -> Bool) -> [Char] -> (WordType , [Char]) lexerWord endCond [] = ([] , []) lexerWord endCond (c:cs) | c == '\\' = if cs == [] then ("\\" , cs) else let (t , cs2) = lexerWord endCond (tail cs) in ((head cs):t , cs2) | endCond c = ([] , (c:cs)) | otherwise = let (t , cs2) = lexerWord endCond cs in ((toUpper c):t , cs2) -- performs lexing inside brackets lexerBracket :: Int -> LexState -> LexerType lexerBracket n s [] = ([] , LexerBracket n s) lexerBracket n s (' ':cs) = lexerBracket n s cs lexerBracket 1 s (']':cs) = let (ts , s2) = lexDispatch s cs in (CloseBracket:ts , s2) lexerBracket n s (']':cs) = let (ts , s2) = lexerBracket (n-1) s cs in (CloseBracket:ts , s2) lexerBracket n s ('[':cs) = let (ts , s2) = lexerBracket (n+1) s cs in (OpenBracket:ts , s2) lexerBracket n s ('(':cs) = let (ts , s2) = lexerParen 1 (LexerBracket n s) cs in (OpenParen:ts , s2) lexerBracket n s (')':cs) = lexerBracket n s cs lexerBracket n s cs = let (t , cs2) = lexerWord (isDelimiter) cs (ts , s2) = lexerBracket n s cs2 in ((Normal (upWord t)):ts , s2) -- performs lexing inside parentheses lexerParen :: Int -> LexState -> LexerType lexerParen n s [] = ([] , LexerParen n s) lexerParen n s (' ':cs) = lexerParen n s cs lexerParen 1 s (')':cs) = let (ts , s2) = lexDispatch s cs in (CloseParen:ts , s2) lexerParen n s (')':cs) = let (ts , s2) = lexerParen (n-1) s cs in (CloseParen:ts , s2) lexerParen n s ('(':cs) = let (ts , s2) = lexerParen (n+1) s cs in (OpenParen:ts , s2) lexerParen n s ('[':cs) = let (ts , s2) = lexerBracket 1 (LexerParen n s) cs in (OpenBracket:ts , s2) lexerParen n s (']':cs) = lexerParen n s cs lexerParen n s ('"':cs) = let (t , cs2) = lexerWord (isDelimiter) cs (ts , s2) = lexerParen n s cs2 in ((QuotedWord (upWord t)):ts , s2) lexerParen n s cs = let (t , cs2) = lexerWord (isDelimiter) cs (ts , s2) = lexerParen n s cs2 in ((Normal (upWord t)):ts , s2) -- returns true for delimiters isDelimiter :: Char -> Bool isDelimiter = inList " []()" -- returns true of p is in cs inList :: (Eq a) => [a] -> a -> Bool inList [] p = False inList (c:cs) p = (c == p) || (inList cs p) -- handle user input lexerReadLine :: [Char] -> [WordType] lexerReadLine [] = [] lexerReadLine (' ':cs) = lexerReadLine cs lexerReadLine cs = let (firstWord,restOfWords) = span (/= ' ') cs in (upWord firstWord) : lexerReadLine restOfWords -- translate a word to upper case upWord :: WordType -> WordType upWord = map (toUpper) ------------------------------------------------------------------------------- module Parser where {- Parser takes a list of tokens, the input state, and fail and success continuations and returns an Abstract Syntax Tree, the remaining tokens (hopefully none), and the new input state. The input state will be changed every time Parser runs out of tokens: it simply grabs (and lexes) the next line of user-input. It therefore doesn't return anything until the entire AST has been be read in, even if it spans several lines, though parse may catch some errors before all lines have been input. In this case, it ceases taking input and returns the error. An Abstract Syntax Tree represents one command, and breaks those commands into Ifs, Loops, Tos, Locals, Makes, Reads, Prints, Constants, List constants, Graphics commands (which produce side-effects), and function applications. All built-in commands that don't fit into one of those categories are lumped into function applications along with user-defined functions. Each type of AST is parsed into subcommands, subclauses (lists of commands), command arguments (also subcommands), and any other values that will be immediately-evaluatable (such as function names). -} import Lexer import Evaluator type CommandName = [Char] type ClauseType = [AST] type ConditionType = AST type ParseArgs = [AST] data ArgType = Val Value | QuotedWordArg WordType deriving Text data AST = ParseList ListType | If ConditionType ClauseType ClauseType | Loop LoopType ConditionType ClauseType | To NameType ProcType | Make NameType AST | Local NameType | Read | Print ParseArgs | Argument ArgType | Graphics CommandName ParseArgs | Command CommandName ParseArgs deriving Text data LoopType = Do | While | Repeat deriving Text type ParseFailType = Error -> InputState -> IO () type ParseType = [Token] -> InputState -> ParseFailType -> (AST -> [Token] -> InputState -> IO ()) -> IO () type ParseClauseType = [Token] -> InputState -> ParseFailType -> (ClauseType -> [Token] -> InputState -> IO ()) -> IO () type InputState = ([[Char]] , LexState) parse :: ParseType parse [] (i:is , ls) fail succ = let (ts , ls2) = lexDispatch ls i in parse ts (is , ls2) fail succ parse ((QuotedWord s) : ts) inS fail succ = succ (Argument (QuotedWordArg s)) ts inS parse ((Normal s) : ts) inS fail succ = succ (Argument (Val (process s))) ts inS parse (OpenParen : []) (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parse (OpenParen:ts) (is,ls2) fail succ parse (OpenParen : (Normal t) : ts) inS fail succ | t == "TO" = makeProc ts inS fail succ | t == "MAKE" = makeMake ts inS fail succ | t == "LOCAL" = makeLocal ts inS fail succ | t == "READ" = makeRead ts inS fail succ | t == "PRINT" = makePrint ts inS fail succ | t == "IF" = makeIf ts inS fail succ | isLoop t = makeLoop t ts inS fail succ | isGraphics t = makeGraphics t ts inS fail succ | otherwise = makeCommand t ts inS fail succ parse (OpenBracket : ts) inS fail succ = parseList ts inS fail succ parse ts inS@([], _) _ succ = succ (Argument (Val (Word "GOODBYE"))) ts inS parse _ inS fail _ = fail "Syntax error" inS -- returns true for all loop names isLoop :: CommandName -> Bool isLoop = inList ["DO","WHILE","REPEAT"] -- returns true for all side-effecting graphics command names isGraphics :: CommandName -> Bool isGraphics = inList ["FORWARD","BACKWARD","LEFT","RIGHT", "SETXY","SETANGLE","PENUP","PENDOWN", "HIDETURTLE","SHOWTURTLE","CLEARSCREEN","CLEAN"] -- Parse lists -- -- parses a list constant parseList :: ParseType parseList [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseList ts (is,ls2) fail succ parseList (CloseBracket:ts) inS fail succ = succ (ParseList NullList) ts inS parseList (OpenBracket:ts) inS fail succ = parseList ts inS fail $ \(ParseList l1) ts2 inS2 -> parseList ts2 inS2 fail $ \(ParseList l2) ts3 inS3 -> succ (ParseList ((List l1) :* l2)) ts3 inS3 parseList ((Normal w):ts) inS fail succ = parseList ts inS fail $ \(ParseList l) ts2 inS2 -> succ (ParseList ((process w) :* l)) ts2 inS2 parseList (OpenParen:ts) inS fail succ = parseList ts inS fail $ \(ParseList l) ts2 inS2 -> succ (ParseList ((Word "(") :* l)) ts2 inS2 parseList (CloseParen:ts) inS fail succ = parseList ts inS fail $ \(ParseList l) ts2 inS2 -> succ (ParseList ((Word ")") :* l)) ts2 inS2 parseList ((QuotedWord w):ts) inS fail succ = parseList ts inS fail $ \(ParseList l) ts2 inS2 -> succ (ParseList ((Word w) :* l)) ts2 inS2 -- parses constant values, distinguishing words from integers and booleans process :: WordType -> Value process "TRUE" = Boolean True process "FALSE" = Boolean False process ('-':w) | all isDigit w = Num (- (stringToNum (reverse w))) | otherwise = Word ('-':w) process w | all isDigit w = Num (stringToNum (reverse w)) | otherwise = Word w -- converts a string to a positive integer stringToNum :: String -> Int stringToNum (d:[]) = charToDigit d stringToNum (d:ds) = (charToDigit d) + 10 * stringToNum ds -- converts a character to a digit charToDigit :: Char -> Int charToDigit c = ord c - ord '0' -- Parse command statements -- -- parses commands -- format: ( ...) makeCommand :: CommandName -> ParseType makeCommand n ts inS fail succ = parseArgs CloseParen ts inS fail $ \as ts2 inS2 -> succ (Command n as) ts2 inS2 -- parses a list of commands that are terminated by token "term"" parseArgs :: Token -> ParseClauseType parseArgs term [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseArgs term ts (is,ls2) fail succ parseArgs term (t:ts) inS fail succ | t == term = succ [] ts inS | otherwise = parse (t:ts) inS fail $ \a ts2 inS2 -> parseArgs term ts2 inS2 fail $ \as ts3 inS3 -> succ (a:as) ts3 inS3 -- Parse I/O statements -- -- parses read statements -- format: (READ) makeRead :: ParseType makeRead (CloseParen:ts) inS fail succ = succ Read ts inS makeRead _ inS fail _ = fail "Read: too many arguments" inS -- parses print statements -- format: (PRINT ) makePrint :: ParseType makePrint ts inS fail succ = parseArgs CloseParen ts inS fail $ \as ts2 inS2 -> if (length as) == 1 then succ (Print as) ts2 inS2 else fail "Print: too many arguments" inS -- Parse TO statements -- -- parses to statements -- format: (TO ... ) -- note: all formal parameter names must begin with a colon makeProc :: ParseType makeProc [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in makeProc ts (is,ls2) fail succ makeProc ((Normal t):ts) inS fail succ = parseFormals ts inS fail $ \p ts2 inS2 -> getParen ts2 inS2 fail $ \ts3 inS3 -> succ (To t p) ts3 inS3 makeProc _ inS fail _ = fail "Invalid procedure name" inS -- parses the formal parameters -- takes all words beginning with a colon, and assumes everything -- after that is part of the body parseFormals :: [Token] -> InputState -> ParseFailType -> (([NameType] , ClauseType) -> [Token] -> InputState -> IO ()) -> IO () parseFormals [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseFormals ts (is,ls2) fail succ parseFormals (OpenBracket:ts) inS fail succ = parseClause (OpenBracket:ts) inS fail $ \pb ts2 inS2 -> succ ([],pb) ts2 inS2 parseFormals ((Normal (':':c:cs)):ts) inS fail succ = parseFormals ts inS fail $ \(formals,pb) ts2 inS2 -> succ ((':':c:cs):formals , pb) ts2 inS2 parseFormals ts inS fail succ = parseClause ts inS fail $ \pb ts2 inS2 -> succ ([],pb) ts2 inS2 -- Parse MAKE statements -- -- parses make statements -- format: (MAKE ) -- note: must be quoted makeMake :: ParseType makeMake [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in makeMake ts (is,ls2) fail succ makeMake ((QuotedWord s):ts) inS fail succ = parse ts inS fail $ \a ts2 inS2 -> getParen ts2 inS2 fail $ \ts3 inS3 -> succ (Make s a) ts3 inS3 makeMake _ inS fail _ = fail "Make: Improper variable name" inS -- Parse LOCAL statements -- -- parses local statements -- format: (LOCAL ) -- note: must be quoted makeLocal :: ParseType makeLocal [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in makeLocal ts (is,ls2) fail succ makeLocal (t:[]) (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in makeLocal (t:ts) (is,ls2) fail succ makeLocal ((QuotedWord s):CloseParen:ts) inS fail succ = succ (Local s) ts inS makeLocal _ inS fail _ = fail "Local: improper variable name" inS -- Parse IF statements -- -- parses if-then and if-then-else statements -- format: (IF then [else ]) makeIf :: ParseType makeIf [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in makeIf ts (is,ls2) fail succ makeIf ts inS fail succ = parse ts inS fail $ \cond ts2 inS2 -> parseThen ts2 inS2 fail $ \thens elses ts3 inS3 -> getParen ts3 inS3 fail $ \ts4 inS4 -> succ (If cond thens elses) ts4 inS4 -- parses then clauses parseThen :: [Token] -> InputState -> ParseFailType -> (ClauseType -> ClauseType -> [Token] -> InputState -> IO ()) -> IO () parseThen [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseThen ts (is,ls2) fail succ parseThen ((Normal "THEN"):ts) inS fail succ = parseClause ts inS fail $ \thens ts2 inS2 -> parseElse ts2 inS2 fail $ \elses ts3 inS3 -> succ thens elses ts3 inS3 parseThen _ inS fail _ = fail "IF: improper THEN clause" inS -- parses (optional) else clauses parseElse :: ParseClauseType parseElse [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseElse ts (is,ls2) fail succ parseElse (CloseParen:ts) inS fail succ = succ [] (CloseParen:ts) inS parseElse ((Normal "ELSE"):ts) inS fail succ = parseClause ts inS fail succ parseElse _ inS fail _ = fail "IF: improper ELSE clause" inS -- parses clauses -- a clause is either a list of commands enclosed in brackets, or a -- single command parseClause :: ParseClauseType parseClause [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseClause ts (is,ls2) fail succ parseClause (OpenBracket:ts) inS fail succ = parseArgs CloseBracket ts inS fail succ parseClause ts inS fail succ = parse ts inS fail $ \a ts2 inS2 -> succ [a] ts2 inS2 -- Parse Loop Statements -- -- parses loop statements -- basically a dispatcher for other parse functions makeLoop :: NameType -> ParseType makeLoop "DO" = makeDo makeLoop "WHILE" = makeWhile makeLoop "REPEAT" = makeRepeat -- parses do statements -- format: (DO WHILE ) makeDo :: ParseType makeDo ts inS fail succ = parseClause ts inS fail $ \insts ts2 inS2 -> parseWhileCond ts2 inS2 fail $ \cond ts3 inS3 -> getParen ts3 inS3 fail $ \ts4 inS4 -> succ (Loop Do cond insts) ts4 inS4 -- parses while conditions (both in while and do-while loops) -- a condition is simply a command that (hopefully) returns a boolean parseWhileCond :: ParseType parseWhileCond [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseWhileCond ts (is,ls2) fail succ parseWhileCond ((Normal "WHILE"):ts) inS fail succ = parse ts inS fail succ -- parses while statements -- format: (WHILE ) makeWhile :: ParseType makeWhile ts inS fail succ = parse ts inS fail $ \cond ts2 inS2 -> parseClause ts2 inS fail $ \insts ts3 inS3 -> getParen ts3 inS3 fail $ \ts4 inS4 -> succ (Loop While cond insts) ts4 inS4 -- parses repeat statements -- format: (REPEAT TIMES ) -- note: is simply a command that (hopefully) returns an integer makeRepeat :: ParseType makeRepeat ts inS fail succ = parse ts inS fail $ \num ts2 inS2 -> parseRepeatBody ts2 inS fail $ \insts ts3 inS3 -> getParen ts3 inS3 fail $ \ts4 inS4 -> succ (Loop Repeat num insts) ts4 inS4 -- parses repeat body (just a clause) parseRepeatBody :: ParseClauseType parseRepeatBody [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in parseRepeatBody ts (is,ls2) fail succ parseRepeatBody ((Normal "TIMES"):ts) inS fail succ = parseClause ts inS fail succ parseRepeatBody _ inS fail _ = fail "Repeat: invalid format" inS -- Parse Graphics Statements -- -- parses all side-effecting graphics statements makeGraphics :: CommandName -> ParseType makeGraphics n ts inS fail succ = parseArgs CloseParen ts inS fail $ \as ts2 inS2 -> succ (Graphics n as) ts2 inS2 -- Parse Trailing Parenthesis -- -- parses the closing paren terminating most commands getParen :: [Token] -> InputState -> ParseFailType -> ([Token] -> InputState -> IO ()) -> IO () getParen [] (i:is,ls) fail succ = let (ts,ls2) = lexDispatch ls i in getParen ts (is,ls) fail succ getParen (CloseParen:ts) inS fail succ = succ ts inS getParen _ inS fail _ = fail "Expected )" inS