blob: 3dd8e4227e036810b539c717d699c3a83ce3fa1d (
about) (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
#include "debug.hh"
#include "const.hh"
#include "qlp.hh"
#include "choleski.hh"
void
Mixed_qp::add_equality_cons(Vector , double )
{
assert(false);
}
void
Mixed_qp::add_fixed_var(int i, Real r)
{
eq_cons.add(i);
eq_consrhs.add(r);
}
void
Ineq_constrained_qp::add_inequality_cons(Vector c, double r)
{
cons.add(c);
consrhs.add(r);
}
Ineq_constrained_qp::Ineq_constrained_qp(int novars):
quad(novars),
lin(novars)
{
}
void
Ineq_constrained_qp::OK() const
{
#ifndef NDEBUG
assert(cons.sz() == consrhs.sz());
Matrix Qdif= quad - quad.transposed();
assert(Qdif.norm()/quad.norm() < EPS);
#endif
}
Real
Ineq_constrained_qp::eval (Vector v)
{
return v * quad * v + lin * v + const_term;
}
/*
eliminate appropriate variables, until we have a Ineq_constrained_qp
then solve that.
PRE
cons should be ascending
*/
Vector
Mixed_qp::solve(Vector start) const
{
print();
Ineq_constrained_qp pure(*this);
for (int i= eq_cons.sz()-1; i>=0; i--) {
pure.eliminate_var(eq_cons[i], eq_consrhs[i]);
start.del(eq_cons[i]);
}
Vector sol = pure.solve(start);
for (int i= 0; i < eq_cons.sz(); i++) {
sol.insert( eq_consrhs[i],eq_cons[i]);
}
return sol;
}
/*
assume x(idx) == value, and adjust constraints, lin and quad accordingly
*/
void
Ineq_constrained_qp::eliminate_var(int idx, Real value)
{
Vector row(quad.row(idx));
row*= value;
quad.delete_row(idx);
quad.delete_column(idx);
lin.del(idx);
row.del(idx);
lin +=row ;
for (int i=0; i < cons.sz(); i++) {
consrhs[i] -= cons[i](idx) *value;
cons[i].del(idx);
}
}
Mixed_qp::Mixed_qp(int n)
: Ineq_constrained_qp(n)
{
}
void
Mixed_qp::OK() const
{
#ifndef NDEBUG
Ineq_constrained_qp::OK();
assert(eq_consrhs.sz() == eq_cons.sz());
#endif
}
void
Ineq_constrained_qp::print() const
{
#ifndef NPRINT
mtor << "Quad " << quad;
mtor << "lin " << lin <<"\n";
for (int i=0; i < cons.sz(); i++) {
mtor << "constraint["<<i<<"]: " << cons[i] << " >= " << consrhs[i];
mtor << "\n";
}
#endif
}
void
Mixed_qp::print() const
{
#ifndef NPRINT
Ineq_constrained_qp::print();
for (int i=0; i < eq_cons.sz(); i++) {
mtor << "eq cons "<<i<<": x["<<eq_cons[i]<<"] == " << eq_consrhs[i]<<"\n";
}
#endif
}
void
Ineq_constrained_qp::assert_solution(Vector sol) const
{
svec<int> binding;
for (int i=0; i < cons.sz(); i++) {
Real R=cons[i] * sol- consrhs[i];
assert(R> -EPS);
if (R < EPS)
binding.add(i);
}
// KKT check...
// todo
}
|