summaryrefslogtreecommitdiff
path: root/lily/skyline.cc
blob: b6ea6b791bbbfa09aaa28e91da0a619c33085890 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
  This file is part of LilyPond, the GNU music typesetter.

  Copyright (C) 2006--2011 Joe Neeman <joeneeman@gmail.com>

  LilyPond is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  LilyPond is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with LilyPond.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "skyline.hh"
#include <deque>
#include <cstdio>

#include "ly-smobs.icc"

/* A skyline is a sequence of non-overlapping buildings: something like
   this:
                   _______
                  |       \                                 ________
                  |        \                       ________/        \
        /\        |          \                    /                  \
       /  --------             \                 /                    \
      /                          \              /                      \
     /                             ------------/                        ----
   --
   Each building has a starting position, and ending position, a starting
   height and an ending height.

   The following invariants are observed:
    - the start of the first building is at -infinity
    - the end of the last building is at infinity
    - if a building has infinite length (ie. the first and last buildings),
      then its starting height and ending height are equal
    - the end of one building is the same as the beginning of the next
      building

   We also allow skylines to point down (the structure is exactly the same,
   but we think of the part above the line as being filled with mass and the
   part below as being empty). ::distance finds the minimum distance between
   an UP skyline and a DOWN skyline.

   Note that we store DOWN skylines upside-down. That is, in order to compare
   a DOWN skyline with an UP skyline, we need to flip the DOWN skyline first.
   This means that the merging routine doesn't need to be aware of direction,
   but the distance routine does.
*/

/* If we start including very thin buildings, numerical accuracy errors can
   arise. Therefore, we ignore all buildings that are less than epsilon wide. */
#define EPS 1e-5

static void
print_buildings (list<Building> const &b)
{
  for (list<Building>::const_iterator i = b.begin (); i != b.end (); i++)
    i->print ();
}

void
Skyline::print () const
{
  print_buildings (buildings_);
}

void
Skyline::print_points () const
{
  vector<Offset> ps (to_points (X_AXIS));

  for (vsize i = 0; i < ps.size (); i++)
    printf ("(%f,%f)%s", ps[i][X_AXIS], ps[i][Y_AXIS],
            (i % 2) == 1 ? "\n" : " ");
}

Building::Building (Real start, Real start_height, Real end_height, Real end)
{
  if (isinf (start) || isinf (end))
    assert (start_height == end_height);

  end_ = end;
  precompute (start, start_height, end_height, end);
}

Building::Building (Box const &b, Real horizon_padding, Axis horizon_axis, Direction sky)
{
  Real start = b[horizon_axis][LEFT] - horizon_padding;
  Real end = b[horizon_axis][RIGHT] + horizon_padding;
  Real height = sky * b[other_axis (horizon_axis)][sky];

  end_ = end;
  precompute (start, height, height, end);
}

void
Building::precompute (Real start, Real start_height, Real end_height, Real end)
{
  slope_ = (end_height - start_height) / (end - start);
  if (start_height == end_height) /* if they were both infinite, we would get nan, not 0, from the prev line */
    slope_ = 0;

  assert (!isinf (slope_) && !isnan (slope_));

  if (isinf (start))
    {
      assert (start_height == end_height);
      y_intercept_ = start_height;
    }
  else
    y_intercept_ = start_height - slope_ * start;
}

Real
Building::height (Real x) const
{
  return isinf (x) ? y_intercept_ : slope_ * x + y_intercept_;
}

void
Building::print () const
{
  printf ("%f x + %f ends at %f\n", slope_, y_intercept_, end_);
}

Real
Building::intersection_x (Building const &other) const
{
  Real ret = (y_intercept_ - other.y_intercept_) / (other.slope_ - slope_);
  return isnan (ret) ? -infinity_f : ret;
}

void
Building::leading_part (Real chop)
{
  assert (chop <= end_);
  end_ = chop;
}

Building
Building::sloped_neighbour (Real start, Real horizon_padding, Direction d) const
{
  Real x = (d == LEFT) ? start : end_;
  Real left = x;
  Real right = x + d * horizon_padding;
  Real left_height = height (x);
  Real right_height = left_height - horizon_padding;
  if (d == LEFT)
    {
      swap (left, right);
      swap (left_height, right_height);
    }
  return Building (left, left_height, right_height, right);
}

static Real
first_intersection (Building const &b, list<Building> *const s, Real start_x)
{
  while (!s->empty () && start_x < b.end_)
    {
      Building c = s->front ();
      if (c.conceals (b, start_x))
        return start_x;

      Real i = b.intersection_x (c);
      if (i > start_x && i <= b.end_ && i <= c.end_)
        return i;

      start_x = c.end_;
      if (b.end_ > c.end_)
        s->pop_front ();
    }
  return b.end_;
}

bool
Building::conceals (Building const &other, Real x) const
{
  if (slope_ == other.slope_)
    return y_intercept_ > other.y_intercept_;

  /* their slopes were not equal, so there is an intersection point */
  Real i = intersection_x (other);
  return (i <= x && slope_ > other.slope_)
         || (i > x && slope_ < other.slope_);
}

void
Skyline::internal_merge_skyline (list<Building> *s1, list<Building> *s2,
                                 list<Building> *const result)
{
  if (s1->empty () || s2->empty ())
    {
      programming_error ("tried to merge an empty skyline");
      return;
    }

  Real x = -infinity_f;
  while (!s1->empty ())
    {
      if (s2->front ().conceals (s1->front (), x))
        swap (s1, s2);

      Building b = s1->front ();
      Real end = first_intersection (b, s2, x);

      if (s2->empty ())
        {
          result->push_front (b);
          break;
        }

      /* only include buildings wider than epsilon */
      if (end > x + EPS)
        {
          b.leading_part (end);
          result->push_front (b);
        }

      if (end >= s1->front ().end_)
        s1->pop_front ();

      x = end;
    }
  result->reverse ();
}

static void
empty_skyline (list<Building> *const ret)
{
  ret->push_front (Building (-infinity_f, -infinity_f, -infinity_f, infinity_f));
}

/*
  Given Building 'b' with starting wall location 'start', extend each side
  with a sloped roofline of width 'horizon_padding'; put the skyline in 'ret'
*/
static void
single_skyline (Building b, Real start, Real horizon_padding, list<Building> *const ret)
{
  bool sloped_neighbours = horizon_padding > 0 && !isinf (start) && !isinf (b.end_);
  if (!isinf (b.end_))
    ret->push_front (Building (b.end_ + horizon_padding, -infinity_f,
                               -infinity_f, infinity_f));
  if (sloped_neighbours)
    ret->push_front (b.sloped_neighbour (start, horizon_padding, RIGHT));

  if (b.end_ > start + EPS)
    ret->push_front (b);

  if (sloped_neighbours)
    ret->push_front (b.sloped_neighbour (start, horizon_padding, LEFT));

  if (!isinf (start))
    ret->push_front (Building (-infinity_f, -infinity_f,
                               -infinity_f, start - horizon_padding));
}

/* remove a non-overlapping set of boxes from BOXES and build a skyline
   out of them */
static list<Building>
non_overlapping_skyline (list<Box> *const boxes, Real horizon_padding, Axis horizon_axis, Direction sky)
{
  list<Building> result;
  Real last_end = -infinity_f;
  list<Box>::iterator i = boxes->begin ();
  while (i != boxes->end ())
    {
      Interval iv = (*i)[horizon_axis];

      if (iv[LEFT] - horizon_padding < last_end)
        {
          i++;
          continue;
        }

      if (iv[LEFT] - horizon_padding > last_end + EPS)
        result.push_front (Building (last_end, -infinity_f, -infinity_f, iv[LEFT] - 2 * horizon_padding));

      Building b (*i, horizon_padding, horizon_axis, sky);
      bool sloped_neighbours = horizon_padding > 0 && !isinf (iv.length ());
      if (sloped_neighbours)
        result.push_front (b.sloped_neighbour (iv[LEFT] - horizon_padding, horizon_padding, LEFT));
      result.push_front (b);
      if (sloped_neighbours)
        result.push_front (b.sloped_neighbour (iv[LEFT] - horizon_padding, horizon_padding, RIGHT));

      list<Box>::iterator j = i++;
      boxes->erase (j);
      last_end = result.front ().end_;
    }
  if (last_end < infinity_f)
    result.push_front (Building (last_end, -infinity_f, -infinity_f, infinity_f));
  result.reverse ();
  return result;
}

class LessThanBox
{
  Axis a_;

public:
  LessThanBox (Axis a)
  {
    a_ = a;
  }

  bool operator () (Box const &b1, Box const &b2)
  {
    return b1[a_][LEFT] < b2[a_][LEFT];
  }
};

list<Building>
Skyline::internal_build_skyline (list<Box> *boxes, Real horizon_padding, Axis horizon_axis, Direction sky)
{
  vsize size = boxes->size ();

  if (size == 0)
    {
      list<Building> result;
      empty_skyline (&result);
      return result;
    }
  else if (size == 1)
    {
      list<Building> result;
      single_skyline (Building (boxes->front (), horizon_padding, horizon_axis, sky),
                      boxes->front ()[horizon_axis][LEFT] - horizon_padding,
                      horizon_padding, &result);
      return result;
    }

  deque<list<Building> > partials;
  boxes->sort (LessThanBox (horizon_axis));
  while (!boxes->empty ())
    partials.push_back (non_overlapping_skyline (boxes, horizon_padding, horizon_axis, sky));

  /* we'd like to say while (partials->size () > 1) but that's O (n).
     Instead, we exit in the middle of the loop */
  while (!partials.empty ())
    {
      list<Building> merged;
      list<Building> one = partials.front ();
      partials.pop_front ();
      if (partials.empty ())
        return one;

      list<Building> two = partials.front ();
      partials.pop_front ();
      internal_merge_skyline (&one, &two, &merged);
      partials.push_back (merged);
    }
  assert (0);
  return list<Building> ();
}

Skyline::Skyline ()
{
  sky_ = UP;
  empty_skyline (&buildings_);
}

Skyline::Skyline (Skyline const &src)
{
  sky_ = src.sky_;

  /* doesn't a list's copy constructor do this? -- jneem */
  for (list<Building>::const_iterator i = src.buildings_.begin ();
       i != src.buildings_.end (); i++)
    {
      buildings_.push_back (Building ((*i)));
    }
}

Skyline::Skyline (Direction sky)
{
  sky_ = sky;
  empty_skyline (&buildings_);
}

/*
  build padded skyline from an existing skyline with padding
  added to it.
*/

Skyline::Skyline (Skyline const &src, Real horizon_padding, Axis /*a*/)
{
  /*
     We extract boxes from the skyline, then build a new skyline from
     the boxes.
     A box is created for every horizontal portion of the skyline
     Because skylines are defined positive, and then inverted if they
     are to be down-facing, we create the new skyline in the UP
     direction, then give it the down direction if needed.
  */
  Real start = -infinity_f;
  list<Box> boxes;

  // establish a baseline box
  // FIXME: This has hardcoded logic, assuming a == X_AXIS!
  boxes.push_back (Box (Interval (-infinity_f, infinity_f),
                        Interval (0, 0)));
  list<Building>::const_iterator end = src.buildings_.end ();
  for (list<Building>::const_iterator i = src.buildings_.begin (); i != end; start = i->end_, i++)
    if ((i->slope_ == 0) && !isinf (i->y_intercept_))
      boxes.push_back (Box (Interval (start, i->end_),
                            Interval (-infinity_f, i->y_intercept_)));
  buildings_ = internal_build_skyline (&boxes, horizon_padding, X_AXIS, UP);
  sky_ = src.sky_;
}

/*
  build skyline from a set of boxes. If horizon_padding > 0, expand all the boxes
  by that amount and add 45-degree sloped boxes to the edges of each box (of
  width horizon_padding). That is, the total amount of horizontal expansion is
  horizon_padding*4, half of which is sloped and half of which is flat.

  Boxes should have fatness in the horizon_axis (after they are expanded by
  horizon_padding), otherwise they are ignored.
 */
Skyline::Skyline (vector<Box> const &boxes, Real horizon_padding, Axis horizon_axis, Direction sky)
{
  list<Box> filtered_boxes;
  sky_ = sky;

  Axis vert_axis = other_axis (horizon_axis);
  for (vsize i = 0; i < boxes.size (); i++)
    {
      Interval iv = boxes[i][horizon_axis];
      iv.widen (horizon_padding);
      if (iv.length () > EPS && !boxes[i][vert_axis].is_empty ())
        filtered_boxes.push_front (boxes[i]);
    }

  buildings_ = internal_build_skyline (&filtered_boxes, horizon_padding, horizon_axis, sky);
}

Skyline::Skyline (Box const &b, Real horizon_padding, Axis horizon_axis, Direction sky)
{
  sky_ = sky;
  Building front (b, horizon_padding, horizon_axis, sky);
  single_skyline (front, b[horizon_axis][LEFT] - horizon_padding,
                  horizon_padding, &buildings_);
}

void
Skyline::merge (Skyline const &other)
{
  assert (sky_ == other.sky_);

  list<Building> other_bld (other.buildings_);
  list<Building> my_bld;
  my_bld.splice (my_bld.begin (), buildings_);
  internal_merge_skyline (&other_bld, &my_bld, &buildings_);
}

void
Skyline::insert (Box const &b, Real horizon_padding, Axis a)
{
  list<Building> other_bld;
  list<Building> my_bld;

  if (isnan (b[other_axis (a)][LEFT])
      || isnan (b[other_axis (a)][RIGHT]))
    {
      programming_error ("insane box for skyline");
      return;
    }

  /* do the same filtering as in Skyline (vector<Box> const&, etc.) */
  Interval iv = b[a];
  iv.widen (horizon_padding);
  if (iv.length () <= EPS || b[other_axis (a)].is_empty ())
    return;

  my_bld.splice (my_bld.begin (), buildings_);
  single_skyline (Building (b, horizon_padding, a, sky_), b[a][LEFT] - horizon_padding,
                  horizon_padding, &other_bld);
  internal_merge_skyline (&other_bld, &my_bld, &buildings_);
}

void
Skyline::raise (Real r)
{
  list<Building>::iterator end = buildings_.end ();
  for (list<Building>::iterator i = buildings_.begin (); i != end; i++)
    i->y_intercept_ += sky_ * r;
}

void
Skyline::shift (Real s)
{
  list<Building>::iterator end = buildings_.end ();
  for (list<Building>::iterator i = buildings_.begin (); i != end; i++)
    {
      i->end_ += s;
      i->y_intercept_ -= s * i->slope_;
    }
}

Real
Skyline::distance (Skyline const &other, Real horizon_padding) const
{
  assert (sky_ == -other.sky_);

  Skyline const *padded_this = this;
  Skyline const *padded_other = &other;

  /*
    For systems, padding is not added at creation time.  Padding is
    added to AxisGroup objects when outside-staff objects are added.
    Thus, when we want to place systems with horizontal padding,
    we do it at distance calculation time.
  */
  if (horizon_padding != 0.0)
    {
      padded_this = new Skyline (*padded_this, horizon_padding, X_AXIS);
      padded_other = new Skyline (*padded_other, horizon_padding, X_AXIS);
    }

  list<Building>::const_iterator i = padded_this->buildings_.begin ();
  list<Building>::const_iterator j = padded_other->buildings_.begin ();

  Real dist = -infinity_f;
  Real start = -infinity_f;
  while (i != padded_this->buildings_.end () && j != padded_other->buildings_.end ())
    {
      Real end = min (i->end_, j->end_);
      Real start_dist = i->height (start) + j->height (start);
      Real end_dist = i->height (end) + j->height (end);
      dist = max (dist, max (start_dist, end_dist));
      if (i->end_ <= j->end_)
        i++;
      else
        j++;
      start = end;
    }
  return dist;
}

Real
Skyline::height (Real airplane) const
{
  assert (!isinf (airplane));

  list<Building>::const_iterator i;
  for (i = buildings_.begin (); i != buildings_.end (); i++)
    {
      if (i->end_ >= airplane)
        return sky_ * i->height (airplane);
    }

  assert (0);
  return 0;
}

Real
Skyline::max_height () const
{
  Skyline s (-sky_);
  s.set_minimum_height (0);
  return sky_ * distance (s);
}

void
Skyline::set_minimum_height (Real h)
{
  Skyline s (sky_);
  s.buildings_.front ().y_intercept_ = h * sky_;
  merge (s);
}

vector<Offset>
Skyline::to_points (Axis horizon_axis) const
{
  vector<Offset> out;

  Real start = -infinity_f;
  for (list<Building>::const_iterator i (buildings_.begin ());
       i != buildings_.end (); i++)
    {
      out.push_back (Offset (start, sky_ * i->height (start)));
      out.push_back (Offset (i->end_, sky_ * i->height (i->end_)));
      start = i->end_;
    }

  if (horizon_axis == Y_AXIS)
    for (vsize i = 0; i < out.size (); i++)
      out[i] = out[i].swapped ();

  return out;
}

bool
Skyline::is_empty () const
{
  Building b = buildings_.front ();
  return b.end_ == infinity_f && b.y_intercept_ == -infinity_f;
}

void
Skyline::clear ()
{
  buildings_.clear ();
  empty_skyline (&buildings_);
}

/****************************************************************/

IMPLEMENT_SIMPLE_SMOBS (Skyline);
IMPLEMENT_TYPE_P (Skyline, "ly:skyline?");
IMPLEMENT_DEFAULT_EQUAL_P (Skyline);

SCM
Skyline::mark_smob (SCM)
{
  ASSERT_LIVE_IS_ALLOWED ();
  return SCM_EOL;
}

int
Skyline::print_smob (SCM s, SCM port, scm_print_state *)
{
  Skyline *r = (Skyline *) SCM_CELL_WORD_1 (s);
  (void) r;

  scm_puts ("#<Skyline>", port);

  return 1;
}