summaryrefslogtreecommitdiff
path: root/lily/bezier.cc
blob: b202d45dd6262f5d52df2590bdc2a93846e68579 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
  This file is part of LilyPond, the GNU music typesetter.

  Copyright (C) 1998--2015 Jan Nieuwenhuizen <janneke@gnu.org>

  LilyPond is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  LilyPond is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with LilyPond.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "bezier.hh"
#include "warn.hh"
#include "libc-extension.hh"

Real binomial_coefficient_3[]
=
{
  1, 3, 3, 1
};

void
scale (vector<Offset> *array, Real x, Real y)
{
  for (vsize i = 0; i < array->size (); i++)
    {
      (*array)[i][X_AXIS] = x * (*array)[i][X_AXIS];
      (*array)[i][Y_AXIS] = y * (*array)[i][Y_AXIS];
    }
}

void
rotate (vector<Offset> *array, Real phi)
{
  Offset rot (complex_exp (Offset (0, phi)));
  for (vsize i = 0; i < array->size (); i++)
    (*array)[i] = complex_multiply (rot, (*array)[i]);
}

void
translate (vector<Offset> *array, Offset o)
{
  for (vsize i = 0; i < array->size (); i++)
    (*array)[i] += o;
}

/*
  Formula of the bezier 3-spline

  sum_{j = 0}^3 (3 over j) z_j (1-t)^ (3-j)  t^j


  A is the axis of X coordinate.
*/

Real
Bezier::get_other_coordinate (Axis a, Real x) const
{
  Axis other = Axis ((a + 1) % NO_AXES);
  vector<Real> ts = solve_point (a, x);

  if (ts.size () == 0)
    {
      programming_error ("no solution found for Bezier intersection");
      return 0.0;
    }

#ifdef PARANOID
  Offset c = curve_point (ts[0]);
  if (fabs (c[a] - x) > 1e-8)
    programming_error ("bezier intersection not correct?");
#endif

  return curve_coordinate (ts[0], other);
}

vector<Real>
Bezier::get_other_coordinates (Axis a, Real x) const
{
  Axis other = other_axis (a);
  vector<Real> ts = solve_point (a, x);
  vector<Real> sols;
  for (vsize i = 0; i < ts.size (); i++)
    sols.push_back (curve_coordinate (ts[i], other));
  return sols;
}

Real
Bezier::curve_coordinate (Real t, Axis a) const
{
  Real tj = 1;
  Real one_min_tj[4];
  one_min_tj[0] = 1;
  for (int i = 1; i < 4; i++)
    one_min_tj[i] = one_min_tj[i - 1] * (1 - t);

  Real r = 0.0;
  for (int j = 0; j < 4; j++)
    {
      r += control_[j][a] * binomial_coefficient_3[j]
           * tj * one_min_tj[3 - j];

      tj *= t;
    }

  return r;
}

Offset
Bezier::curve_point (Real t) const
{
  Real tj = 1;
  Real one_min_tj[4];
  one_min_tj[0] = 1;
  for (int i = 1; i < 4; i++)
    one_min_tj[i] = one_min_tj[i - 1] * (1 - t);

  Offset o;
  for (int j = 0; j < 4; j++)
    {
      o += control_[j] * binomial_coefficient_3[j]
           * tj * one_min_tj[3 - j];

      tj *= t;
    }

#ifdef PARANOID
  assert (fabs (o[X_AXIS] - polynomial (X_AXIS).eval (t)) < 1e-8);
  assert (fabs (o[Y_AXIS] - polynomial (Y_AXIS).eval (t)) < 1e-8);
#endif

  return o;
}

// The return value is normalized unless zero or indefinite.
Offset
Bezier::dir_at_point (Real t) const
{
  Offset second_order[3];
  Offset third_order[2];

  for (vsize i = 0; i < 3; i++)
    second_order[i] = ((control_[i + 1] - control_[i]) * t) + control_[i];

  for (vsize i = 0; i < 2; i++)
    third_order[i] = ((second_order[i + 1] - second_order[i]) * t) + second_order[i];

  return (third_order[1] - third_order[0]).direction ();
}

/*
  Cache binom (3, j) t^j (1-t)^{3-j}
*/
struct Polynomial_cache
{
  Polynomial terms_[4];
  Polynomial_cache ()
  {
    for (int j = 0; j <= 3; j++)
      terms_[j]
        = binomial_coefficient_3[j]
          * Polynomial::power (j, Polynomial (0, 1))
          * Polynomial::power (3 - j, Polynomial (1, -1));
  }
};

static Polynomial_cache poly_cache;

Polynomial
Bezier::polynomial (Axis a) const
{
  Polynomial p (0.0);
  Polynomial q;
  for (int j = 0; j <= 3; j++)
    {
      q = poly_cache.terms_[j];
      q *= control_[j][a];
      p += q;
    }

  return p;
}

/**
   Remove all numbers outside [0, 1] from SOL
*/
vector<Real>
filter_solutions (vector<Real> sol)
{
  for (vsize i = sol.size (); i--;)
    if (sol[i] < 0 || sol[i] > 1)
      sol.erase (sol.begin () + i);
  return sol;
}

/**
   find t such that derivative is proportional to DERIV
*/
vector<Real>
Bezier::solve_derivative (Offset deriv) const
{
  Polynomial xp = polynomial (X_AXIS);
  Polynomial yp = polynomial (Y_AXIS);
  xp.differentiate ();
  yp.differentiate ();

  Polynomial combine = xp * deriv[Y_AXIS] - yp * deriv [X_AXIS];

  return filter_solutions (combine.solve ());
}

/*
  Find t such that curve_point (t)[AX] == COORDINATE
*/
vector<Real>
Bezier::solve_point (Axis ax, Real coordinate) const
{
  Polynomial p (polynomial (ax));
  p.coefs_[0] -= coordinate;

  vector<Real> sol (p.solve ());
  return filter_solutions (sol);
}

/**
   For the portion of the curve between L and R along axis AX,
   return the bounding box limit in direction D along the cross axis to AX.
   If there is no portion between L and R, return 0.0 and report error.
*/
Real
Bezier::minmax (Axis ax, Real l, Real r, Direction d) const
{
  Axis bx = other_axis (ax);

  // The curve could hit its bounding box limit along BX at:
  //  points where the curve is parallel to AX,
  Offset vec (0.0, 0.0);
  vec[ax] = 1.0;
  vector<Real> sols (solve_derivative (vec));
  //  or endpoints of the curve,
  sols.push_back (0.999);
  sols.push_back (0.001);
  // (using points just inside the ends, so that an endpoint is evaulated
  //  if it falls within rounding error of L or R and the curve lies inside)

  Interval iv;
  for (vsize i = sols.size (); i--;)
    {
      Offset p (curve_point (sols[i]));
      if (p[ax] >= l && p[ax] <= r)
        iv.add_point (p[bx]);
    }

  //  or intersections of the curve with the bounding lines at L and R.
  Interval lr (l, r);
  for (LEFT_and_RIGHT (dir))
    {
      vector<Real> v = get_other_coordinates (ax, lr[dir]);
      for (vsize i = v.size (); i--;)
        iv.add_point (v[i]);
    }

  if (iv.is_empty ())
    {
      programming_error ("Bezier curve does not cross region of concern");
      return 0.0;
    }

  return iv.at (d);
}

/**
   Compute the bounding box dimensions in direction of A.
*/
Interval
Bezier::extent (Axis a) const
{
  int o = (a + 1) % NO_AXES;
  Offset d;
  d[Axis (o)] = 1.0;
  Interval iv;
  vector<Real> sols (solve_derivative (d));
  sols.push_back (1.0);
  sols.push_back (0.0);
  for (vsize i = sols.size (); i--;)
    {
      Offset o (curve_point (sols[i]));
      iv.unite (Interval (o[a], o[a]));
    }
  return iv;
}

Interval
Bezier::control_point_extent (Axis a) const
{
  Interval ext;
  for (int i = CONTROL_COUNT; i--;)
    ext.add_point (control_[i][a]);

  return ext;
}

/**
   Flip around axis A
*/
void
Bezier::scale (Real x, Real y)
{
  for (int i = CONTROL_COUNT; i--;)
    {
      control_[i][X_AXIS] = x * control_[i][X_AXIS];
      control_[i][Y_AXIS] = y * control_[i][Y_AXIS];
    }
}

void
Bezier::rotate (Real phi)
{
  Offset rot (complex_exp (Offset (0, phi)));
  for (int i = 0; i < CONTROL_COUNT; i++)
    control_[i] = complex_multiply (rot, control_[i]);
}

void
Bezier::translate (Offset o)
{
  for (int i = 0; i < CONTROL_COUNT; i++)
    control_[i] += o;
}

void
Bezier::assert_sanity () const
{
  for (int i = 0; i < CONTROL_COUNT; i++)
    assert (!isnan (control_[i].length ())
            && !isinf (control_[i].length ()));
}

void
Bezier::reverse ()
{
  Bezier b2;
  for (int i = 0; i < CONTROL_COUNT; i++)
    b2.control_[CONTROL_COUNT - i - 1] = control_[i];
  *this = b2;
}

/*
  Subdivide a bezier at T into LEFT_PART and RIGHT_PART
  using deCasteljau's algorithm.
*/
void
Bezier::subdivide (Real t, Bezier *left_part, Bezier *right_part) const
{
  Offset p[CONTROL_COUNT][CONTROL_COUNT];

  for (int i = 0; i < CONTROL_COUNT; i++)
    p[i][CONTROL_COUNT - 1 ] = control_[i];
  for (int j = CONTROL_COUNT - 2; j >= 0; j--)
    for (int i = 0; i < CONTROL_COUNT - 1; i++)
      p[i][j] = p[i][j + 1] + t * (p[i + 1][j + 1] - p[i][j + 1]);
  for (int i = 0; i < CONTROL_COUNT; i++)
    {
      left_part->control_[i] = p[0][CONTROL_COUNT - 1 - i];
      right_part->control_[i] = p[i][i];
    }
}

/*
  Extract a portion of a bezier from T_MIN to T_MAX
*/

Bezier
Bezier::extract (Real t_min, Real t_max) const
{
  if ((t_min < 0) || (t_max) > 1)
    programming_error
    ("bezier extract arguments outside of limits: curve may have bad shape");
  if (t_min >= t_max)
    programming_error
    ("lower bezier extract value not less than upper value: curve may have bad shape");
  Bezier bez1, bez2, bez3, bez4;
  if (t_min == 0.0)
    bez2 = *this;
  else
    subdivide (t_min, &bez1, &bez2);
  if (t_max == 1.0)
    return bez2;
  else
    {
      bez2.subdivide ((t_max - t_min) / (1 - t_min), &bez3, &bez4);
      return bez3;
    }
}