summaryrefslogtreecommitdiff
path: root/flower/offset.cc
blob: b7f5df40262c7b67e1fbea794142401c558eba7a (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
  This file is part of LilyPond, the GNU music typesetter.

  Copyright (C) 1997--2015 Han-Wen Nienhuys <hanwen@xs4all.nl>

  LilyPond is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  LilyPond is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with LilyPond.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "offset.hh"

#ifndef STANDALONE
string
Offset::to_string () const
{
  string s;
  s = string (" (") + ::to_string (coordinate_a_[X_AXIS]) + ", "
      + ::to_string (coordinate_a_[Y_AXIS]) + ")";
  return s;
}
#endif

/*
  free bsd fix by John Galbraith
*/

Offset
complex_multiply (Offset z1, Offset z2)
{
  Offset z;
  if (!isinf (z2[Y_AXIS]))
    {
      z[X_AXIS] = z1[X_AXIS] * z2[X_AXIS] - z1[Y_AXIS] * z2[Y_AXIS];
      z[Y_AXIS] = z1[X_AXIS] * z2[Y_AXIS] + z1[Y_AXIS] * z2[X_AXIS];
    }
  return z;
}

Offset
complex_conjugate (Offset o)
{
  o[Y_AXIS] = -o[Y_AXIS];
  return o;
}

Offset
complex_divide (Offset z1, Offset z2)
{
  z2 = complex_conjugate (z2);
  Offset z = complex_multiply (z1, z2);
  z *= 1 / z2.length ();
  return z;
}

Offset
complex_exp (Offset o)
{
  Real s = sin (o[Y_AXIS]);
  Real c = cos (o[Y_AXIS]);

  Real r = exp (o[X_AXIS]);

  return Offset (r * c, r * s);
}

Real
Offset::arg () const
{
  return atan2 (coordinate_a_[Y_AXIS], coordinate_a_[X_AXIS]);
}

static inline Real
atan2d (Real y, Real x)
{
  return atan2 (y, x) * (180.0 / M_PI);
}

Real
Offset::angle_degrees () const
{
  Real x = coordinate_a_ [X_AXIS];
  Real y = coordinate_a_ [Y_AXIS];

  // We keep in the vicinity of multiples of 45 degrees here: this is
  // where straightforward angles for straightforward angular
  // relations are most expected.  The factors of 2 employed in the
  // comparison are not really perfect for that: sqrt(2)+1 would be
  // the factor giving exact windows of 45 degrees rather than what we
  // have here.  It's just that 2 is likely to generate nicer code
  // than 2.4 and the exact handover does not really matter.
  //
  // Comparisons here are chosen appropriately to let infinities end
  // up in their "exact" branch.  As opposed to the normal atan2
  // function behavior, this makes "competing" infinities result in
  // NAN angles.
  if (y < 0.0)
    {
      if (2*x < -y)
        if (-x > -2*y)          // x < 0, y < 0, |x| > |2y|
          return -180 + atan2d (-y, -x);
        else if (-2*x >= -y)    // x < 0, y < 0, |y| < |2x| <= |4y|
          return -135 + atan2d (x - y, -y - x);
        else                    // y < 0, |y| >= |2x|
          return -90 + atan2d (x, -y);
      else if (x <= -2*y)       // x > 0, y < 0, |y| <= |2x| < |4y|
        return -45 + atan2d (x + y, x - y);
      // Drop through for y < 0, x > |2y|
    }
  else if (y > 0.0)
    {
      if (2*x < y)
        if (-x > 2*y)           // x < 0, y >= 0, |x| > |2y|
          return 180 - atan2d (y, -x);
        else if (-2*x >= y)     // x < 0, y >= 0, |y| < |2x| <= |4y|
          return 135 - atan2d (x + y, y - x);
        else                    // y >= 0, |y| >= |2x|
          return 90 - atan2d (x, y);
      else if (x <= 2*y)        // x >= 0, y >= 0, |y| < |2x| < |4y|
        return 45 - atan2d (x - y, x + y);
      // Drop through for y > 0, x > |2y|
    }
  else
    // we return 0 for (0,0).  NAN would be an option but is a
    // nuisance for getting back to rectangular coordinates.  Strictly
    // speaking, this argument would be just as valid for (+inf.0,
    // +inf.0), but then infinities are already an indication of a
    // problem in LilyPond.
    return (x < 0.0) ? 180 : 0;
  return atan2d (y, x);
}


/**
   euclidian vector length / complex modulus
*/
Real
Offset::length () const
{
  return hypot (coordinate_a_[X_AXIS], coordinate_a_[Y_AXIS]);
}

bool
Offset::is_sane () const
{
  return !isnan (coordinate_a_[X_AXIS])
         && !isnan (coordinate_a_ [Y_AXIS])
         && !isinf (coordinate_a_[X_AXIS])
         && !isinf (coordinate_a_[Y_AXIS]);
}

Offset
Offset::direction () const
{
  Offset d = *this;
  if (isinf (d[X_AXIS]))
    {
      if (!isinf (d[Y_AXIS]))
        return Offset ((d[X_AXIS] > 0.0 ? 1.0 : -1.0), 0.0);
    }
  else if (isinf (d[Y_AXIS]))
    return Offset (0.0, (d[Y_AXIS] > 0.0 ? 1.0 : -1.0));
  else if (d[X_AXIS] == 0.0 && d[Y_AXIS] == 0.0)
    return d;
  // The other cases propagate or produce NaN as appropriate.

  d /= length ();
  return d;
}

Offset
Offset::swapped () const
{
  return Offset (coordinate_a_[Y_AXIS], coordinate_a_[X_AXIS]);
}