1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
#include "choleski.hh"
const Real EPS = 1e-7; // so sue me. Hard coded
Vector
Choleski_decomposition::solve(Vector rhs)const
{
int n= rhs.dim();
assert(n == L.dim());
Vector y(n);
// forward substitution
for (int i=0; i < n; i++) {
Real sum(0.0);
for (int j=0; j < i; j++)
sum += y(j) * L(i,j);
y(i) = (rhs(i) - sum)/L(i,i);
}
for (int i=0; i < n; i++)
y(i) /= D(i);
// backward subst
Vector &x(rhs); // using input as return val.
for (int i=n-1; i >= 0; i--) {
Real sum(0.0);
for (int j=i+1; j < n; j++)
sum += L(j,i)*x(j);
x(i) = (y(i) - sum)/L(i,i);
}
return x;
}
/*
Standard matrix algorithm.
*/
Choleski_decomposition::Choleski_decomposition(Matrix P)
: L(P.dim()), D(P.dim())
{
int n = P.dim();
assert((P-P.transposed()).norm()/P.norm() < EPS);
L.unit();
for (int k= 0; k < n; k++) {
for (int j = 0; j < k; j++){
Real sum(0.0);
for (int l=0; l < j; l++)
sum += L(k,l)*L(j,l)*D(l);
L(k,j) = (P(k,j) - sum)/D(j);
}
Real sum=0.0;
for (int l=0; l < k; l++)
sum += sqr(L(k,l))*D(l);
Real d = P(k,k) - sum;
D(k) = d;
}
#ifndef NDEBUG
assert((original()-P).norm() / P.norm() < EPS);
#endif
}
Matrix
Choleski_decomposition::original() const
{
Matrix T(L.dim());
T.set_diag(D);
return L*T*L.transposed();
}
Matrix
Choleski_decomposition::inverse() const
{
int n=L.dim();
Matrix invm(n);
Vector e_i(n);
for (int i = 0; i < n; i++) {
e_i.set_unit(i);
Vector inv(solve(e_i));
for (int j = 0 ; j<n; j++)
invm(i,j) = inv(j);
}
#ifndef NDEBUG
Matrix I1(n), I2(original());
I1.unit();
assert((I1-I2*invm).norm()/I2.norm() < EPS);
#endif
return invm;
}
|