/* This file is part of LilyPond, the GNU music typesetter. Copyright (C) 2006--2015 Joe Neeman LilyPond is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. LilyPond is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with LilyPond. If not, see . */ #include "constrained-breaking.hh" #include "international.hh" #include "main.hh" #include "output-def.hh" #include "page-layout-problem.hh" #include "paper-column.hh" #include "paper-score.hh" #include "simple-spacer.hh" #include "system.hh" #include "warn.hh" /* We use the following optimal substructure. Let W (A) be our weight function. Let A_{k, n} = (a_{k, n, 1}, ... a_{k, n, k}) be the optimal set of line breaks for k systems and n potential breakpoints. a_{k, n, k} = n (it is the end of the piece) Then A_{k+1, m} is contructed from min_ {k < j < m} ( W (A_{k, j} :: m) ) where by A::m we denote appending m to the list A Indices in the code: The above algorithm makes it easy to end at a point before the end of the score (just find A_{k, m} for some m < breaks_.size () - 1). However, we must add information for starting at a point after the beginning. One constructor allows the specification of a list of starting columns, start_. We then have start_.size () different solution arrays. state_[i] is the array for the solution starting at column number start_[i]. The indices "start" and "end" refer to the index in the start_ array of the desired starting and ending columns. each solution array looks like a_{1,1,1} a_{2,1,2} a_{3,1,3} . . . X a_{2,2,2} a_{3,2,3} . . . X X a_{3,3,3} . . . . . . . . . . . where the X's mark invalid solutions (can't have more systems than breakpoints). Note that each value is of the form a_{x, n, x}. This is because a breakpoint of the form a_{x, n, x-1} will also be called a_{x-1, m, x-1} for some m < n. Each cell in the array stores the value of its m (ie. the ending breakpoint of the previous line) as "prev_". For finding A_{sys, brk}, let "me" be the (sys_count, brk) cell in our solution array (state_[start][sys * rank + brk]). Then A_{sys, brk} = A_{sys - 1, me.prev_} :: me */ /* start and sys here are indexed from 0. brk is indexed from starting_breakpoints_[start] (for brk, starting_breakpoints_[start] is the beginning of the piece; the smallest value we should ever see here is starting_breakpoints_[start] + 1) */ bool Constrained_breaking::calc_subproblem (vsize start, vsize sys, vsize brk) { assert (sys < systems_); assert (start < start_.size ()); assert (brk < breaks_.size ()); bool found_something = false; vsize start_col = starting_breakpoints_[start]; Matrix &st = state_[start]; vsize max_index = brk - start_col; for (vsize j = max_index; j-- > sys;) { if (0 == sys && j > 0) continue; /* the first line cannot have its first break after the beginning */ Line_details const &cur = lines_.at (brk, j + start_col); if (isinf (cur.force_)) break; Real prev_f = 0; Real prev_dem = 0; if (sys > 0) { prev_f = st.at (j, sys - 1).details_.force_; prev_dem = st.at (j, sys - 1).demerits_; } if (isinf (prev_dem)) continue; Real dem = combine_demerits (cur.force_, prev_f) + prev_dem + cur.break_penalty_; Constrained_break_node &n = st.at (max_index, sys); if (dem < n.demerits_) { found_something = true; n.demerits_ = dem; n.details_ = cur; n.prev_ = j; } } return found_something; } Column_x_positions Constrained_breaking::space_line (vsize i, vsize j) { bool ragged_right = to_boolean (pscore_->layout ()->c_variable ("ragged-right")); bool ragged_last = to_boolean (pscore_->layout ()->c_variable ("ragged-last")); vector line (all_.begin () + breaks_[i], all_.begin () + breaks_[j] + 1); Interval line_dims = line_dimensions_int (pscore_->layout (), i); bool last = j == breaks_.size () - 1; bool ragged = ragged_right || (last && ragged_last); /* As a special case, if there is only one line in the score and ragged-right hasn't been specifically forbidden and the line is stretched, use ragged spacing. */ if (last && i == 0 && lines_.at (i, j).force_ >= 0 && !scm_is_bool (pscore_->layout ()->c_variable ("ragged-right")) && !scm_is_bool (pscore_->layout ()->c_variable ("ragged-last"))) ragged = true; return get_line_configuration (line, line_dims[RIGHT] - line_dims[LEFT], line_dims[LEFT], ragged); } void Constrained_breaking::resize (vsize systems) { systems_ = systems; if (pscore_ && systems_ > valid_systems_) { for (vsize i = 0; i < state_.size (); i++) state_[i].resize (breaks_.size () - starting_breakpoints_[i], systems_, Constrained_break_node ()); /* fill out the matrices */ for (vsize i = 0; i < state_.size (); i++) for (vsize j = valid_systems_; j < systems_; j++) for (vsize k = starting_breakpoints_[i] + j + 1; k < breaks_.size (); k++) if (!calc_subproblem (i, j, k)) break; /* if we couldn't break this, it is too cramped already */ valid_systems_ = systems_; } } vector Constrained_breaking::solve (vsize start, vsize end, vsize sys_count) { vsize start_brk = starting_breakpoints_[start]; vsize end_brk = prepare_solution (start, end, sys_count); Matrix const &st = state_[start]; vector ret; /* find the first solution that satisfies constraints */ for (vsize sys = sys_count - 1; sys != VPOS; sys--) { for (vsize brk = end_brk; brk != VPOS; brk--) { if (!isinf (st.at (brk, sys).details_.force_)) { if (brk != end_brk) { brk = st.at (brk, sys).prev_; sys--; warning (_ ("cannot find line breaking that satisfies constraints")); ret.push_back (space_line (brk, end_brk)); } /* build up the good part of the solution */ for (vsize cur_sys = sys; cur_sys != VPOS; cur_sys--) { vsize prev_brk = st.at (brk, cur_sys).prev_; assert (brk != VPOS); ret.push_back (space_line (prev_brk + start_brk, brk + start_brk)); brk = prev_brk; } reverse (ret); return ret; } } } /* if we get to here, just put everything on one line */ if (sys_count > 0) { warning (_ ("cannot find line breaking that satisfies constraints")); ret.push_back (space_line (0, end_brk)); } return ret; } vector Constrained_breaking::best_solution (vsize start, vsize end) { vsize min_systems = min_system_count (start, end); vsize max_systems = max_system_count (start, end); Real best_demerits = infinity_f; vector best_so_far; for (vsize i = min_systems; i <= max_systems; i++) { vsize brk = prepare_solution (start, end, i); Real dem = state_[start].at (brk, i - 1).demerits_; if (dem < best_demerits) { best_demerits = dem; best_so_far = solve (start, end, i); } else { vector cur = solve (start, end, i); bool too_many_lines = true; for (vsize j = 0; j < cur.size (); j++) if (cur[j].force_ < 0) { too_many_lines = false; break; } if (too_many_lines) return best_so_far; } } if (best_so_far.size ()) return best_so_far; return solve (start, end, max_systems); } std::vector Constrained_breaking::line_details (vsize start, vsize end, vsize sys_count) { vsize end_brk = prepare_solution (start, end, sys_count); Matrix const &st = state_[start]; vector ret; /* This loop structure is C&Ped from solve(). */ /* find the first solution that satisfies constraints */ for (vsize sys = sys_count - 1; sys != VPOS; sys--) { for (vsize brk = end_brk; brk != VPOS; brk--) { if (!isinf (st.at (brk, sys).details_.force_)) { if (brk != end_brk) { /* During initialize(), we only fill out a Line_details for lines that are valid (ie. not too long), otherwise line breaking becomes O(n^3). In case sys_count is such that no valid solution is found, we need to fill in the Line_details. */ Line_details details; brk = st.at (brk, sys).prev_; sys--; fill_line_details (&details, brk, end_brk); ret.push_back (details); } /* build up the good part of the solution */ for (vsize cur_sys = sys; cur_sys != VPOS; cur_sys--) { vsize prev_brk = st.at (brk, cur_sys).prev_; assert (brk != VPOS); ret.push_back (st.at (brk, cur_sys).details_); brk = prev_brk; } reverse (ret); return ret; } } } /* if we get to here, just put everything on one line */ if (sys_count > 0) { Line_details details; fill_line_details (&details, 0, end_brk); ret.push_back (details); } return ret; } int Constrained_breaking::min_system_count (vsize start, vsize end) { vsize sys_count; vsize brk = prepare_solution (start, end, 1); vsize rank = breaks_.size () - starting_breakpoints_[start]; Matrix const &st = state_[start]; /* sys_count < rank : rank is the # of breakpoints, we can't have more systems */ for (sys_count = 0; sys_count < rank; sys_count++) { if (sys_count >= valid_systems_) { resize (sys_count + 3); } if (!isinf (st.at (brk, sys_count).details_.force_)) return sys_count + 1; } /* no possible breaks satisfy constraints */ return 1; } int Constrained_breaking::max_system_count (vsize start, vsize end) { vsize brk = (end >= start_.size ()) ? breaks_.size () - 1 : starting_breakpoints_[end]; return brk - starting_breakpoints_[start]; } vsize Constrained_breaking::prepare_solution (vsize start, vsize end, vsize sys_count) { assert (start < start_.size () && (end == VPOS || end <= start_.size ())); assert (start < end); resize (sys_count); if (end == start_.size ()) end = VPOS; vsize brk; brk = end == VPOS ? breaks_.size () - 1 : starting_breakpoints_[end]; brk -= starting_breakpoints_[start]; return brk; } Constrained_breaking::Constrained_breaking (Paper_score *ps) { valid_systems_ = systems_ = 0; start_.push_back (0); pscore_ = ps; initialize (); } Constrained_breaking::Constrained_breaking (Paper_score *ps, vector const &start) : start_ (start) { valid_systems_ = systems_ = 0; pscore_ = ps; initialize (); } static SCM min_permission (SCM perm1, SCM perm2) { if (scm_is_eq (perm1, ly_symbol2scm ("force"))) return perm2; if (scm_is_eq (perm1, ly_symbol2scm ("allow")) && !scm_is_eq (perm2, ly_symbol2scm ("force"))) return perm2; return SCM_EOL; } /* find the forces for all possible lines and cache ragged_ and ragged_right_ */ void Constrained_breaking::initialize () { if (!pscore_) return; ragged_right_ = to_boolean (pscore_->layout ()->c_variable ("ragged-right")); ragged_last_ = to_boolean (pscore_->layout ()->c_variable ("ragged-last")); system_system_space_ = 0; system_markup_space_ = 0; system_system_padding_ = 0; system_system_min_distance_ = 0; score_system_padding_ = 0; score_system_min_distance_ = 0; score_markup_padding_ = 0; score_markup_min_distance_ = 0; Output_def *l = pscore_->layout (); SCM spacing_spec = l->c_variable ("system-system-spacing"); SCM between_scores_spec = l->c_variable ("score-system-spacing"); SCM title_spec = l->c_variable ("score-markup-spacing"); SCM page_breaking_spacing_spec = l->c_variable ("page-breaking-system-system-spacing"); Page_layout_problem::read_spacing_spec (spacing_spec, &system_system_space_, ly_symbol2scm ("basic-distance")); Page_layout_problem::read_spacing_spec (page_breaking_spacing_spec, &system_system_space_, ly_symbol2scm ("basic-distance")); Page_layout_problem::read_spacing_spec (title_spec, &system_markup_space_, ly_symbol2scm ("basic-distance")); Page_layout_problem::read_spacing_spec (spacing_spec, &system_system_padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (between_scores_spec, &score_system_padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (page_breaking_spacing_spec, &system_system_padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (title_spec, &score_markup_padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (between_scores_spec, &score_system_min_distance_, ly_symbol2scm ("minimum-distance")); Page_layout_problem::read_spacing_spec (spacing_spec, &system_system_min_distance_, ly_symbol2scm ("minimum-distance")); Page_layout_problem::read_spacing_spec (page_breaking_spacing_spec, &system_system_min_distance_, ly_symbol2scm ("minimum-distance")); Page_layout_problem::read_spacing_spec (title_spec, &score_markup_min_distance_, ly_symbol2scm ("minimum-distance")); Interval first_line = line_dimensions_int (pscore_->layout (), 0); Interval other_lines = line_dimensions_int (pscore_->layout (), 1); /* do all the rod/spring problems */ breaks_ = pscore_->get_break_indices (); all_ = pscore_->root_system ()->used_columns (); lines_.resize (breaks_.size (), breaks_.size (), Line_details ()); vector forces = get_line_forces (all_, other_lines.length (), other_lines.length () - first_line.length (), ragged_right_); for (vsize i = 0; i + 1 < breaks_.size (); i++) { for (vsize j = i + 1; j < breaks_.size (); j++) { bool last = j == breaks_.size () - 1; bool ragged = ragged_right_ || (last && ragged_last_); Line_details &line = lines_.at (j, i); line.force_ = forces[i * breaks_.size () + j]; if (ragged && last && !isinf (line.force_)) line.force_ = (line.force_ < 0 && j > i + 1) ? infinity_f : 0; if (isinf (line.force_)) break; fill_line_details (&line, i, j); } } /* work out all the starting indices */ for (vsize i = 0; i < start_.size (); i++) { vsize j; for (j = 0; j + 1 < breaks_.size () && breaks_[j] < start_[i]; j++) ; starting_breakpoints_.push_back (j); start_[i] = breaks_[j]; } state_.resize (start_.size ()); } /* Fills out all of the information contained in a Line_details, except for information about horizontal spacing. */ void Constrained_breaking::fill_line_details (Line_details *const out, vsize start, vsize end) { int start_rank = Paper_column::get_rank (all_[breaks_[start]]); int end_rank = Paper_column::get_rank (all_[breaks_[end]]); System *sys = pscore_->root_system (); Interval begin_of_line_extent = sys->begin_of_line_pure_height (start_rank, end_rank); Interval rest_of_line_extent = sys->rest_of_line_pure_height (start_rank, end_rank); bool last = (end == breaks_.size () - 1); Grob *c = all_[breaks_[end]]; out->last_column_ = c; out->break_penalty_ = robust_scm2double (c->get_property ("line-break-penalty"), 0); out->page_penalty_ = robust_scm2double (c->get_property ("page-break-penalty"), 0); out->turn_penalty_ = robust_scm2double (c->get_property ("page-turn-penalty"), 0); out->break_permission_ = c->get_property ("line-break-permission"); out->page_permission_ = c->get_property ("page-break-permission"); out->turn_permission_ = c->get_property ("page-turn-permission"); /* turn permission should always be stricter than page permission and page permission should always be stricter than line permission */ out->page_permission_ = min_permission (out->break_permission_, out->page_permission_); out->turn_permission_ = min_permission (out->page_permission_, out->turn_permission_); begin_of_line_extent = (begin_of_line_extent.is_empty () || isnan (begin_of_line_extent[LEFT]) || isnan (begin_of_line_extent[RIGHT])) ? Interval (0, 0) : begin_of_line_extent; rest_of_line_extent = (rest_of_line_extent.is_empty () || isnan (rest_of_line_extent[LEFT]) || isnan (rest_of_line_extent[RIGHT])) ? Interval (0, 0) : rest_of_line_extent; out->shape_ = Line_shape (begin_of_line_extent, rest_of_line_extent); out->padding_ = last ? score_system_padding_ : system_system_padding_; out->title_padding_ = score_markup_padding_; out->min_distance_ = last ? score_system_min_distance_ : system_system_min_distance_; out->title_min_distance_ = score_markup_min_distance_; out->space_ = system_system_space_; out->title_space_ = system_markup_space_; out->inverse_hooke_ = out->full_height () + system_system_space_; out->footnote_heights_ = sys->get_footnote_heights_in_range (start_rank, end_rank); out->in_note_heights_ = sys->get_in_note_heights_in_range (start_rank, end_rank); out->refpoint_extent_ = sys->pure_refpoint_extent (start_rank, end_rank); if (out->refpoint_extent_.is_empty ()) out->refpoint_extent_ = Interval (0, 0); } Real Constrained_breaking::combine_demerits (Real force, Real prev_force) { if (ragged_right_) return force * force; return force * force + (prev_force - force) * (prev_force - force); } Line_details::Line_details (Prob *pb, Output_def *paper) { SCM spec = paper->c_variable ("markup-system-spacing"); SCM title_spec = paper->c_variable ("markup-markup-spacing"); padding_ = 0; title_padding_ = 0; min_distance_ = 0; title_min_distance_ = 0; space_ = 0; title_space_ = 0; Page_layout_problem::read_spacing_spec (spec, &space_, ly_symbol2scm ("basic-distance")); Page_layout_problem::read_spacing_spec (title_spec, &title_space_, ly_symbol2scm ("basic-distance")); Page_layout_problem::read_spacing_spec (spec, &padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (title_spec, &title_padding_, ly_symbol2scm ("padding")); Page_layout_problem::read_spacing_spec (spec, &min_distance_, ly_symbol2scm ("minimum-distance")); Page_layout_problem::read_spacing_spec (title_spec, &title_min_distance_, ly_symbol2scm ("minimum-distance")); SCM footnotes = pb->get_property ("footnotes"); if (scm_is_pair (footnotes)) for (SCM s = footnotes; scm_is_pair (s); s = scm_cdr (s)) { Stencil *sten = unsmob (scm_caddar (s)); if (!sten) { programming_error ("expecting stencil, got empty pointer"); continue; } footnote_heights_.push_back (sten->extent (Y_AXIS).length ()); } last_column_ = 0; force_ = 0; Stencil *st = unsmob (pb->get_property ("stencil")); Interval stencil_extent = st->is_empty (Y_AXIS) ? Interval (0, 0) : st->extent (Y_AXIS); shape_ = Line_shape (stencil_extent, stencil_extent); // pretend it goes all the way across tallness_ = 0; bottom_padding_ = 0; inverse_hooke_ = 1.0; break_permission_ = ly_symbol2scm ("allow"); page_permission_ = pb->get_property ("page-break-permission"); turn_permission_ = pb->get_property ("page-turn-permission"); break_penalty_ = 0; page_penalty_ = robust_scm2double (pb->get_property ("page-break-penalty"), 0); turn_penalty_ = robust_scm2double (pb->get_property ("page-turn-penalty"), 0); title_ = to_boolean (pb->get_property ("is-title")); compressed_lines_count_ = 1; compressed_nontitle_lines_count_ = title_ ? 0 : 1; SCM last_scm = pb->get_property ("last-markup-line"); last_markup_line_ = to_boolean (last_scm); SCM first_scm = pb->get_property ("first-markup-line"); first_markup_line_ = to_boolean (first_scm); tight_spacing_ = to_boolean (pb->get_property ("tight-spacing")); refpoint_extent_ = Interval (0, 0); } Real Line_details::full_height () const { Interval ret; ret.unite (shape_.begin_); ret.unite (shape_.rest_); return ret.length (); } Real Line_details::tallness () const { return tallness_; } Real Line_details::spring_length (Line_details const &next_line) const { // space_ measures the spring which goes from the bottom refpoint // of this to the top refpoint of next_line. We want to return // the stretchable space between the bottom of this's extent to // the top of next_line's extent. Real refpoint_dist = tallness_ + refpoint_extent_[DOWN] - next_line.refpoint_extent_[UP]; Real space = next_line.title_ ? title_space_ : space_; return max (0.0, space - refpoint_dist); } Line_shape::Line_shape (Interval begin, Interval rest) { begin_ = begin; rest_ = rest; } Line_shape Line_shape::piggyback (Line_shape mount, Real padding) const { Real elevation = max (begin_[UP] - mount.begin_[DOWN], rest_[UP] - mount.rest_[DOWN]); Interval begin = Interval (begin_[DOWN], elevation + mount.begin_[UP] + padding); Interval rest = Interval (rest_[DOWN], elevation + mount.rest_[UP] + padding); return Line_shape (begin, rest); }