/* This file is part of LilyPond, the GNU music typesetter. Copyright (C) 1998--2015 Jan Nieuwenhuizen LilyPond is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. LilyPond is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with LilyPond. If not, see . */ #include "bezier.hh" #include "warn.hh" #include "libc-extension.hh" Real binomial_coefficient_3[] = { 1, 3, 3, 1 }; void scale (vector *array, Real x, Real y) { for (vsize i = 0; i < array->size (); i++) { (*array)[i][X_AXIS] = x * (*array)[i][X_AXIS]; (*array)[i][Y_AXIS] = y * (*array)[i][Y_AXIS]; } } void rotate (vector *array, Real phi) { Offset rot (complex_exp (Offset (0, phi))); for (vsize i = 0; i < array->size (); i++) (*array)[i] = complex_multiply (rot, (*array)[i]); } void translate (vector *array, Offset o) { for (vsize i = 0; i < array->size (); i++) (*array)[i] += o; } /* Formula of the bezier 3-spline sum_{j = 0}^3 (3 over j) z_j (1-t)^ (3-j) t^j A is the axis of X coordinate. */ Real Bezier::get_other_coordinate (Axis a, Real x) const { Axis other = Axis ((a + 1) % NO_AXES); vector ts = solve_point (a, x); if (ts.size () == 0) { programming_error ("no solution found for Bezier intersection"); return 0.0; } #ifdef PARANOID Offset c = curve_point (ts[0]); if (fabs (c[a] - x) > 1e-8) programming_error ("bezier intersection not correct?"); #endif return curve_coordinate (ts[0], other); } vector Bezier::get_other_coordinates (Axis a, Real x) const { Axis other = other_axis (a); vector ts = solve_point (a, x); vector sols; for (vsize i = 0; i < ts.size (); i++) sols.push_back (curve_coordinate (ts[i], other)); return sols; } Real Bezier::curve_coordinate (Real t, Axis a) const { Real tj = 1; Real one_min_tj[4]; one_min_tj[0] = 1; for (int i = 1; i < 4; i++) one_min_tj[i] = one_min_tj[i - 1] * (1 - t); Real r = 0.0; for (int j = 0; j < 4; j++) { r += control_[j][a] * binomial_coefficient_3[j] * tj * one_min_tj[3 - j]; tj *= t; } return r; } Offset Bezier::curve_point (Real t) const { Real tj = 1; Real one_min_tj[4]; one_min_tj[0] = 1; for (int i = 1; i < 4; i++) one_min_tj[i] = one_min_tj[i - 1] * (1 - t); Offset o; for (int j = 0; j < 4; j++) { o += control_[j] * binomial_coefficient_3[j] * tj * one_min_tj[3 - j]; tj *= t; } #ifdef PARANOID assert (fabs (o[X_AXIS] - polynomial (X_AXIS).eval (t)) < 1e-8); assert (fabs (o[Y_AXIS] - polynomial (Y_AXIS).eval (t)) < 1e-8); #endif return o; } // The return value is normalized unless zero or indefinite. Offset Bezier::dir_at_point (Real t) const { Offset second_order[3]; Offset third_order[2]; for (vsize i = 0; i < 3; i++) second_order[i] = ((control_[i + 1] - control_[i]) * t) + control_[i]; for (vsize i = 0; i < 2; i++) third_order[i] = ((second_order[i + 1] - second_order[i]) * t) + second_order[i]; return (third_order[1] - third_order[0]).direction (); } /* Cache binom (3, j) t^j (1-t)^{3-j} */ struct Polynomial_cache { Polynomial terms_[4]; Polynomial_cache () { for (int j = 0; j <= 3; j++) terms_[j] = binomial_coefficient_3[j] * Polynomial::power (j, Polynomial (0, 1)) * Polynomial::power (3 - j, Polynomial (1, -1)); } }; static Polynomial_cache poly_cache; Polynomial Bezier::polynomial (Axis a) const { Polynomial p (0.0); Polynomial q; for (int j = 0; j <= 3; j++) { q = poly_cache.terms_[j]; q *= control_[j][a]; p += q; } return p; } /** Remove all numbers outside [0, 1] from SOL */ vector filter_solutions (vector sol) { for (vsize i = sol.size (); i--;) if (sol[i] < 0 || sol[i] > 1) sol.erase (sol.begin () + i); return sol; } /** find t such that derivative is proportional to DERIV */ vector Bezier::solve_derivative (Offset deriv) const { Polynomial xp = polynomial (X_AXIS); Polynomial yp = polynomial (Y_AXIS); xp.differentiate (); yp.differentiate (); Polynomial combine = xp * deriv[Y_AXIS] - yp * deriv [X_AXIS]; return filter_solutions (combine.solve ()); } /* Find t such that curve_point (t)[AX] == COORDINATE */ vector Bezier::solve_point (Axis ax, Real coordinate) const { Polynomial p (polynomial (ax)); p.coefs_[0] -= coordinate; vector sol (p.solve ()); return filter_solutions (sol); } /** For the portion of the curve between L and R along axis AX, return the bounding box limit in direction D along the cross axis to AX. If there is no portion between L and R, return 0.0 and report error. */ Real Bezier::minmax (Axis ax, Real l, Real r, Direction d) const { Axis bx = other_axis (ax); // The curve could hit its bounding box limit along BX at: // points where the curve is parallel to AX, Offset vec (0.0, 0.0); vec[ax] = 1.0; vector sols (solve_derivative (vec)); // or endpoints of the curve, sols.push_back (0.999); sols.push_back (0.001); // (using points just inside the ends, so that an endpoint is evaulated // if it falls within rounding error of L or R and the curve lies inside) Interval iv; for (vsize i = sols.size (); i--;) { Offset p (curve_point (sols[i])); if (p[ax] >= l && p[ax] <= r) iv.add_point (p[bx]); } // or intersections of the curve with the bounding lines at L and R. Interval lr (l, r); for (LEFT_and_RIGHT (dir)) { vector v = get_other_coordinates (ax, lr[dir]); for (vsize i = v.size (); i--;) iv.add_point (v[i]); } if (iv.is_empty ()) { programming_error ("Bezier curve does not cross region of concern"); return 0.0; } return iv.at (d); } /** Compute the bounding box dimensions in direction of A. */ Interval Bezier::extent (Axis a) const { int o = (a + 1) % NO_AXES; Offset d; d[Axis (o)] = 1.0; Interval iv; vector sols (solve_derivative (d)); sols.push_back (1.0); sols.push_back (0.0); for (vsize i = sols.size (); i--;) { Offset o (curve_point (sols[i])); iv.unite (Interval (o[a], o[a])); } return iv; } Interval Bezier::control_point_extent (Axis a) const { Interval ext; for (int i = CONTROL_COUNT; i--;) ext.add_point (control_[i][a]); return ext; } /** Flip around axis A */ void Bezier::scale (Real x, Real y) { for (int i = CONTROL_COUNT; i--;) { control_[i][X_AXIS] = x * control_[i][X_AXIS]; control_[i][Y_AXIS] = y * control_[i][Y_AXIS]; } } void Bezier::rotate (Real phi) { Offset rot (complex_exp (Offset (0, phi))); for (int i = 0; i < CONTROL_COUNT; i++) control_[i] = complex_multiply (rot, control_[i]); } void Bezier::translate (Offset o) { for (int i = 0; i < CONTROL_COUNT; i++) control_[i] += o; } void Bezier::assert_sanity () const { for (int i = 0; i < CONTROL_COUNT; i++) assert (!isnan (control_[i].length ()) && !isinf (control_[i].length ())); } void Bezier::reverse () { Bezier b2; for (int i = 0; i < CONTROL_COUNT; i++) b2.control_[CONTROL_COUNT - i - 1] = control_[i]; *this = b2; } /* Subdivide a bezier at T into LEFT_PART and RIGHT_PART using deCasteljau's algorithm. */ void Bezier::subdivide (Real t, Bezier *left_part, Bezier *right_part) const { Offset p[CONTROL_COUNT][CONTROL_COUNT]; for (int i = 0; i < CONTROL_COUNT; i++) p[i][CONTROL_COUNT - 1 ] = control_[i]; for (int j = CONTROL_COUNT - 2; j >= 0; j--) for (int i = 0; i < CONTROL_COUNT - 1; i++) p[i][j] = p[i][j + 1] + t * (p[i + 1][j + 1] - p[i][j + 1]); for (int i = 0; i < CONTROL_COUNT; i++) { left_part->control_[i] = p[0][CONTROL_COUNT - 1 - i]; right_part->control_[i] = p[i][i]; } } /* Extract a portion of a bezier from T_MIN to T_MAX */ Bezier Bezier::extract (Real t_min, Real t_max) const { if ((t_min < 0) || (t_max) > 1) programming_error ("bezier extract arguments outside of limits: curve may have bad shape"); if (t_min >= t_max) programming_error ("lower bezier extract value not less than upper value: curve may have bad shape"); Bezier bez1, bez2, bez3, bez4; if (t_min == 0.0) bez2 = *this; else subdivide (t_min, &bez1, &bez2); if (t_max == 1.0) return bez2; else { bez2.subdivide ((t_max - t_min) / (1 - t_min), &bez3, &bez4); return bez3; } }