/* This file is part of LilyPond, the GNU music typesetter. Copyright (C) 1997--2015 Han-Wen Nienhuys LilyPond is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. LilyPond is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with LilyPond. If not, see . */ #include "rational.hh" #include #include #include using namespace std; #include "string-convert.hh" #include "libc-extension.hh" double Rational::to_double () const { if (sign_ == -1 || sign_ == 1 || sign_ == 0) return (double)sign_ * (double)num_ / (double)den_; if (sign_ == -2) return -HUGE_VAL; else if (sign_ == 2) return HUGE_VAL; else assert (false); return 0.0; } #ifdef STREAM_SUPPORT ostream & operator << (ostream &o, Rational r) { o << r.string (); return o; } #endif Rational Rational::abs () const { return Rational (num_, den_); } Rational Rational::trunc_rat () const { if (is_infinity ()) return *this; return Rational ((num_ - (num_ % den_)) * sign_, den_); } Rational::Rational () { sign_ = 0; num_ = den_ = 1; } Rational::Rational (I64 n, I64 d) { sign_ = ::sign (n) * ::sign (d); num_ = ::abs (n); den_ = ::abs (d); normalize (); } Rational::Rational (I64 n) { sign_ = ::sign (n); num_ = ::abs (n); den_ = 1; } Rational::Rational (U64 n) { sign_ = 1; num_ = n; den_ = 1; } Rational::Rational (int n) { sign_ = ::sign (n); num_ = ::abs (n); den_ = 1; } void Rational::set_infinite (int s) { sign_ = ::sign (s) * 2; num_ = 1; } Rational Rational::operator - () const { Rational r (*this); r.negate (); return r; } Rational Rational::div_rat (Rational div) const { Rational r (*this); r /= div; return r.trunc_rat (); } Rational Rational::mod_rat (Rational div) const { Rational r (*this); r = (r / div - r.div_rat (div)) * div; return r; } /* copy & paste from scm_gcd (GUILE). */ static I64 gcd (I64 u, I64 v) { I64 result = 0; if (u == 0) result = v; else if (v == 0) result = u; else { I64 k = 1; I64 t; /* Determine a common factor 2^k */ while (!(1 & (u | v))) { k <<= 1; u >>= 1; v >>= 1; } /* Now, any factor 2^n can be eliminated */ if (u & 1) t = -v; else { t = u; b3: t = t >> 1; } if (!(1 & t)) goto b3; if (t > 0) u = t; else v = -t; t = u - v; if (t != 0) goto b3; result = u * k; } return result; } void Rational::normalize () { if (!sign_) { den_ = 1; num_ = 0; } else if (!den_) { sign_ = 2; num_ = 1; } else if (!num_) { sign_ = 0; den_ = 1; } else { I64 g = gcd (num_, den_); num_ /= g; den_ /= g; } } int Rational::sign () const { return ::sign (sign_); } int Rational::compare (Rational const &r, Rational const &s) { if (r.sign_ < s.sign_) return -1; else if (r.sign_ > s.sign_) return 1; else if (r.is_infinity ()) // here s is also infinite with the same sign return 0; else if (r.sign_ == 0) // here s.sign_ is also zero return 0; return ::sign (r - s); } int compare (Rational const &r, Rational const &s) { return Rational::compare (r, s); } Rational & Rational::operator %= (Rational r) { *this = mod_rat (r); return *this; } Rational & Rational::operator += (Rational r) { if (is_infinity ()) ; else if (r.is_infinity ()) *this = r; else { I64 lcm = (den_ / gcd (r.den_, den_)) * r.den_; I64 n = sign_ * num_ * (lcm / den_) + r.sign_ * r.num_ * (lcm / r.den_); I64 d = lcm; sign_ = ::sign (n) * ::sign (d); num_ = ::abs (n); den_ = ::abs (d); normalize (); } return *this; } /* copied from libg++ 2.8.0 */ Rational::Rational (double x) { if (x != 0.0) { sign_ = ::sign (x); x *= sign_; int expt; double mantissa = frexp (x, &expt); const int FACT = 1 << 20; /* Thanks to Afie for this too simple idea. do not blindly substitute by libg++ code, since that uses arbitrary-size integers. The rationals would overflow too easily. */ num_ = (U64) (mantissa * FACT); den_ = (U64) FACT; normalize (); if (expt < 0) den_ <<= -expt; else num_ <<= expt; normalize (); } else { num_ = 0; den_ = 1; sign_ = 0; normalize (); } } void Rational::invert () { I64 r (num_); num_ = den_; den_ = r; } Rational & Rational::operator *= (Rational r) { sign_ *= ::sign (r.sign_); if (r.is_infinity ()) { sign_ = sign () * 2; goto exit_func; } num_ *= r.num_; den_ *= r.den_; normalize (); exit_func: return *this; } Rational & Rational::operator /= (Rational r) { r.invert (); return (*this *= r); } void Rational::negate () { sign_ *= -1; } Rational & Rational::operator -= (Rational r) { r.negate (); return (*this += r); } string Rational::to_string () const { if (is_infinity ()) { string s (sign_ > 0 ? "" : "-"); return string (s + "infinity"); } string s = ::to_string (num ()); if (den () != 1 && num ()) s += "/" + ::to_string (den ()); return s; } int Rational::to_int () const { return (int) (num () / den ()); } int sign (Rational r) { return r.sign (); } bool Rational::is_infinity () const { return sign_ == 2 || sign_ == -2; }