/* This file is part of LilyPond, the GNU music typesetter. Copyright (C) 1997--2015 Han-Wen Nienhuys LilyPond is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. LilyPond is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with LilyPond. If not, see . */ #include "offset.hh" #ifndef STANDALONE string Offset::to_string () const { string s; s = string (" (") + ::to_string (coordinate_a_[X_AXIS]) + ", " + ::to_string (coordinate_a_[Y_AXIS]) + ")"; return s; } #endif /* free bsd fix by John Galbraith */ Offset complex_multiply (Offset z1, Offset z2) { Offset z; if (!isinf (z2[Y_AXIS])) { z[X_AXIS] = z1[X_AXIS] * z2[X_AXIS] - z1[Y_AXIS] * z2[Y_AXIS]; z[Y_AXIS] = z1[X_AXIS] * z2[Y_AXIS] + z1[Y_AXIS] * z2[X_AXIS]; } return z; } static inline Real atan2d (Real y, Real x) { return atan2 (y, x) * (180.0 / M_PI); } Real Offset::angle_degrees () const { Real x = coordinate_a_ [X_AXIS]; Real y = coordinate_a_ [Y_AXIS]; // We keep in the vicinity of multiples of 45 degrees here: this is // where straightforward angles for straightforward angular // relations are most expected. The factors of 2 employed in the // comparison are not really perfect for that: sqrt(2)+1 would be // the factor giving exact windows of 45 degrees rather than what we // have here. It's just that 2 is likely to generate nicer code // than 2.4 and the exact handover does not really matter. // // Comparisons here are chosen appropriately to let infinities end // up in their "exact" branch. As opposed to the normal atan2 // function behavior, this makes "competing" infinities result in // NAN angles. if (y < 0.0) { if (2*x < -y) if (-x > -2*y) // x < 0, y < 0, |x| > |2y| return -180 + atan2d (-y, -x); else if (-2*x >= -y) // x < 0, y < 0, |y| < |2x| <= |4y| return -135 + atan2d (x - y, -y - x); else // y < 0, |y| >= |2x| return -90 + atan2d (x, -y); else if (x <= -2*y) // x > 0, y < 0, |y| <= |2x| < |4y| return -45 + atan2d (x + y, x - y); // Drop through for y < 0, x > |2y| } else if (y > 0.0) { if (2*x < y) if (-x > 2*y) // x < 0, y >= 0, |x| > |2y| return 180 - atan2d (y, -x); else if (-2*x >= y) // x < 0, y >= 0, |y| < |2x| <= |4y| return 135 - atan2d (x + y, y - x); else // y >= 0, |y| >= |2x| return 90 - atan2d (x, y); else if (x <= 2*y) // x >= 0, y >= 0, |y| < |2x| < |4y| return 45 - atan2d (x - y, x + y); // Drop through for y > 0, x > |2y| } else // we return 0 for (0,0). NAN would be an option but is a // nuisance for getting back to rectangular coordinates. Strictly // speaking, this argument would be just as valid for (+inf.0, // +inf.0), but then infinities are already an indication of a // problem in LilyPond. return (x < 0.0) ? 180 : 0; return atan2d (y, x); } /** euclidian vector length / complex modulus */ Real Offset::length () const { return hypot (coordinate_a_[X_AXIS], coordinate_a_[Y_AXIS]); } bool Offset::is_sane () const { return !isnan (coordinate_a_[X_AXIS]) && !isnan (coordinate_a_ [Y_AXIS]) && !isinf (coordinate_a_[X_AXIS]) && !isinf (coordinate_a_[Y_AXIS]); } Offset Offset::direction () const { Offset d = *this; if (isinf (d[X_AXIS])) { if (!isinf (d[Y_AXIS])) return Offset ((d[X_AXIS] > 0.0 ? 1.0 : -1.0), 0.0); } else if (isinf (d[Y_AXIS])) return Offset (0.0, (d[Y_AXIS] > 0.0 ? 1.0 : -1.0)); else if (d[X_AXIS] == 0.0 && d[Y_AXIS] == 0.0) return d; // The other cases propagate or produce NaN as appropriate. d /= length (); return d; } Offset Offset::swapped () const { return Offset (coordinate_a_[Y_AXIS], coordinate_a_[X_AXIS]); } Offset offset_directed (Real angle) { if (angle <= -360.0 || angle >= 360.0) angle = fmod (angle, 360.0); // Now |angle| < 360.0, and the absolute size is not larger than // before, so we haven't lost precision. if (angle <= -180.0) angle += 360.0; else if (angle > 180.0) angle -= 360.0; // Now -180.0 < angle <= 180.0 and we still haven't lost precision. // We don't work with angles greater than 45 degrees absolute in // order to minimize how rounding errors of M_PI/180 affect the // result. That way, at least angles that are a multiple of 90 // degree deliver the expected results. // // Sign of the sine is chosen to avoid -0.0 in results. This // version delivers exactly equal magnitude on x/y for odd multiples // of 45 degrees at the cost of losing some less obvious invariants. if (angle > 0) if (angle > 90) return Offset (sin ((90 - angle) * M_PI/180.0), sin ((180 - angle) * M_PI/180.0)); else return Offset (sin ((90 - angle) * M_PI/180.0), sin (angle * M_PI/180.0)); else if (angle < -90) return Offset (sin ((90 + angle) * M_PI/180.0), sin ((-180 - angle) * M_PI/180.0)); else return Offset (sin ((90 + angle) * M_PI/180.0), sin (angle * M_PI/180.0)); }