1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
|
;;; srfi-1.scm --- List Library
;; Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009, 2010, 2011 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Some parts from the reference implementation, which is
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
;;; this code as long as you do not remove this copyright notice or
;;; hold me liable for its use.
;;; Author: Martin Grabmueller <mgrabmue@cs.tu-berlin.de>
;;; Date: 2001-06-06
;;; Commentary:
;; This is an implementation of SRFI-1 (List Library).
;;
;; All procedures defined in SRFI-1, which are not already defined in
;; the Guile core library, are exported. The procedures in this
;; implementation work, but they have not been tuned for speed or
;; memory usage.
;;
;; This module is fully documented in the Guile Reference Manual.
;;; Code:
(define-module (srfi srfi-1)
:export (
;;; Constructors
;; cons <= in the core
;; list <= in the core
xcons
;; cons* <= in the core
;; make-list <= in the core
list-tabulate
list-copy
circular-list
;; iota ; Extended.
;;; Predicates
proper-list?
circular-list?
dotted-list?
;; pair? <= in the core
;; null? <= in the core
null-list?
not-pair?
list=
;;; Selectors
;; car <= in the core
;; cdr <= in the core
;; caar <= in the core
;; cadr <= in the core
;; cdar <= in the core
;; cddr <= in the core
;; caaar <= in the core
;; caadr <= in the core
;; cadar <= in the core
;; caddr <= in the core
;; cdaar <= in the core
;; cdadr <= in the core
;; cddar <= in the core
;; cdddr <= in the core
;; caaaar <= in the core
;; caaadr <= in the core
;; caadar <= in the core
;; caaddr <= in the core
;; cadaar <= in the core
;; cadadr <= in the core
;; caddar <= in the core
;; cadddr <= in the core
;; cdaaar <= in the core
;; cdaadr <= in the core
;; cdadar <= in the core
;; cdaddr <= in the core
;; cddaar <= in the core
;; cddadr <= in the core
;; cdddar <= in the core
;; cddddr <= in the core
;; list-ref <= in the core
first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth
car+cdr
take
drop
take-right
drop-right
take!
drop-right!
split-at
split-at!
last
;; last-pair <= in the core
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
;; length <= in the core
length+
;; append <= in the core
;; append! <= in the core
concatenate
concatenate!
;; reverse <= in the core
;; reverse! <= in the core
append-reverse
append-reverse!
zip
unzip1
unzip2
unzip3
unzip4
unzip5
count
;;; Fold, unfold & map
fold
fold-right
pair-fold
pair-fold-right
reduce
reduce-right
unfold
unfold-right
;; map ; Extended.
;; for-each ; Extended.
append-map
append-map!
map!
;; map-in-order ; Extended.
pair-for-each
filter-map
;;; Filtering & partitioning
;; filter <= in the core
partition
remove
;; filter! <= in the core
partition!
remove!
;;; Searching
find
find-tail
take-while
take-while!
drop-while
span
span!
break
break!
any
every
;; list-index ; Extended.
;; member ; Extended.
;; memq <= in the core
;; memv <= in the core
;;; Deletion
;; delete ; Extended.
;; delete! ; Extended.
delete-duplicates
delete-duplicates!
;;; Association lists
;; assoc ; Extended.
;; assq <= in the core
;; assv <= in the core
alist-cons
alist-copy
alist-delete
alist-delete!
;;; Set operations on lists
lset<=
lset=
lset-adjoin
lset-union
lset-intersection
lset-difference
lset-xor
lset-diff+intersection
lset-union!
lset-intersection!
lset-difference!
lset-xor!
lset-diff+intersection!
;;; Primitive side-effects
;; set-car! <= in the core
;; set-cdr! <= in the core
)
:re-export (cons list cons* make-list pair? null?
car cdr caar cadr cdar cddr
caaar caadr cadar caddr cdaar cdadr cddar cdddr
caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr
cdaaar cdaadr cdadar cdaddr cddaar cddadr cdddar cddddr
list-ref last-pair length append append! reverse reverse!
filter filter! memq memv assq assv set-car! set-cdr!)
:replace (iota map for-each map-in-order list-copy list-index member
delete delete! assoc)
)
(cond-expand-provide (current-module) '(srfi-1))
;; Load the compiled primitives from the shared library.
;;
(load-extension (string-append "libguile-" (effective-version))
"scm_init_srfi_1")
;;; Constructors
(define (xcons d a)
"Like `cons', but with interchanged arguments. Useful mostly when passed to
higher-order procedures."
(cons a d))
(define (wrong-type-arg caller arg)
(scm-error 'wrong-type-arg (symbol->string caller)
"Wrong type argument: ~S" (list arg) '()))
(define-syntax-rule (check-arg pred arg caller)
(if (not (pred arg))
(wrong-type-arg 'caller arg)))
(define (out-of-range proc arg)
(scm-error 'out-of-range proc
"Value out of range: ~A" (list arg) (list arg)))
;; the srfi spec doesn't seem to forbid inexact integers.
(define (non-negative-integer? x) (and (integer? x) (>= x 0)))
(define (list-tabulate n init-proc)
"Return an N-element list, where each list element is produced by applying the
procedure INIT-PROC to the corresponding list index. The order in which
INIT-PROC is applied to the indices is not specified."
(check-arg non-negative-integer? n list-tabulate)
(let lp ((n n) (acc '()))
(if (<= n 0)
acc
(lp (- n 1) (cons (init-proc (- n 1)) acc)))))
(define (circular-list elt1 . elts)
(set! elts (cons elt1 elts))
(set-cdr! (last-pair elts) elts)
elts)
(define* (iota count #:optional (start 0) (step 1))
(check-arg non-negative-integer? count iota)
(let lp ((n 0) (acc '()))
(if (= n count)
(reverse! acc)
(lp (+ n 1) (cons (+ start (* n step)) acc)))))
;;; Predicates
(define (proper-list? x)
(list? x))
(define (circular-list? x)
(if (not-pair? x)
#f
(let lp ((hare (cdr x)) (tortoise x))
(if (not-pair? hare)
#f
(let ((hare (cdr hare)))
(if (not-pair? hare)
#f
(if (eq? hare tortoise)
#t
(lp (cdr hare) (cdr tortoise)))))))))
(define (dotted-list? x)
(cond
((null? x) #f)
((not-pair? x) #t)
(else
(let lp ((hare (cdr x)) (tortoise x))
(cond
((null? hare) #f)
((not-pair? hare) #t)
(else
(let ((hare (cdr hare)))
(cond
((null? hare) #f)
((not-pair? hare) #t)
((eq? hare tortoise) #f)
(else
(lp (cdr hare) (cdr tortoise)))))))))))
(define (null-list? x)
(cond
((proper-list? x)
(null? x))
((circular-list? x)
#f)
(else
(error "not a proper list in null-list?"))))
(define (not-pair? x)
"Return #t if X is not a pair, #f otherwise.
This is shorthand notation `(not (pair? X))' and is supposed to be used for
end-of-list checking in contexts where dotted lists are allowed."
(not (pair? x)))
(define (list= elt= . rest)
(define (lists-equal a b)
(let lp ((a a) (b b))
(cond ((null? a)
(null? b))
((null? b)
#f)
(else
(and (elt= (car a) (car b))
(lp (cdr a) (cdr b)))))))
(check-arg procedure? elt= list=)
(or (null? rest)
(let lp ((lists rest))
(or (null? (cdr lists))
(and (lists-equal (car lists) (cadr lists))
(lp (cdr lists)))))))
;;; Selectors
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr x)
"Return two values, the `car' and the `cdr' of PAIR."
(values (car x) (cdr x)))
(define take list-head)
(define drop list-tail)
;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
;;; off by K, then chasing down the list until the lead pointer falls off
;;; the end. Note that they diverge for circular lists.
(define (take-right lis k)
(let lp ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(lp (cdr lag) (cdr lead))
lag)))
(define (drop-right lis k)
(let recur ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(cons (car lag) (recur (cdr lag) (cdr lead)))
'())))
(define (take! lst i)
"Linear-update variant of `take'."
(if (= i 0)
'()
(let ((tail (drop lst (- i 1))))
(set-cdr! tail '())
lst)))
(define (drop-right! lst i)
"Linear-update variant of `drop-right'."
(let ((tail (drop lst i)))
(if (null? tail)
'()
(let loop ((prev lst)
(tail (cdr tail)))
(if (null? tail)
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
lst)
(loop (cdr prev)
(cdr tail)))))))
(define (split-at lst i)
"Return two values, a list of the elements before index I in LST, and
a list of those after."
(if (< i 0)
(out-of-range 'split-at i)
(let lp ((l lst) (n i) (acc '()))
(if (<= n 0)
(values (reverse! acc) l)
(lp (cdr l) (- n 1) (cons (car l) acc))))))
(define (split-at! lst i)
"Linear-update variant of `split-at'."
(cond ((< i 0)
(out-of-range 'split-at! i))
((= i 0)
(values '() lst))
(else
(let lp ((l lst) (n (- i 1)))
(if (<= n 0)
(let ((tmp (cdr l)))
(set-cdr! l '())
(values lst tmp))
(lp (cdr l) (- n 1)))))))
(define (last pair)
"Return the last element of the non-empty, finite list PAIR."
(car (last-pair pair)))
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
(define (zip clist1 . rest)
(let lp ((l (cons clist1 rest)) (acc '()))
(if (any null? l)
(reverse! acc)
(lp (map cdr l) (cons (map car l) acc)))))
(define (unzip1 l)
(map first l))
(define (unzip2 l)
(values (map first l) (map second l)))
(define (unzip3 l)
(values (map first l) (map second l) (map third l)))
(define (unzip4 l)
(values (map first l) (map second l) (map third l) (map fourth l)))
(define (unzip5 l)
(values (map first l) (map second l) (map third l) (map fourth l)
(map fifth l)))
;;; Fold, unfold & map
(define (fold kons knil list1 . rest)
"Apply PROC to the elements of LIST1 ... LISTN to build a result, and return
that result. See the manual for details."
(check-arg procedure? kons fold)
(if (null? rest)
(let f ((knil knil) (list1 list1))
(if (null? list1)
knil
(f (kons (car list1) knil) (cdr list1))))
(let f ((knil knil) (lists (cons list1 rest)))
(if (any null? lists)
knil
(let ((cars (map car lists))
(cdrs (map cdr lists)))
(f (apply kons (append! cars (list knil))) cdrs))))))
(define (fold-right kons knil clist1 . rest)
(check-arg procedure? kons fold-right)
(if (null? rest)
(let loop ((lst (reverse clist1))
(result knil))
(if (null? lst)
result
(loop (cdr lst)
(kons (car lst) result))))
(let loop ((lists (map reverse (cons clist1 rest)))
(result knil))
(if (any1 null? lists)
result
(loop (map cdr lists)
(apply kons (append! (map car lists) (list result))))))))
(define (pair-fold kons knil clist1 . rest)
(check-arg procedure? kons pair-fold)
(if (null? rest)
(let f ((knil knil) (list1 clist1))
(if (null? list1)
knil
(let ((tail (cdr list1)))
(f (kons list1 knil) tail))))
(let f ((knil knil) (lists (cons clist1 rest)))
(if (any null? lists)
knil
(let ((tails (map cdr lists)))
(f (apply kons (append! lists (list knil))) tails))))))
(define (pair-fold-right kons knil clist1 . rest)
(check-arg procedure? kons pair-fold-right)
(if (null? rest)
(let f ((list1 clist1))
(if (null? list1)
knil
(kons list1 (f (cdr list1)))))
(let f ((lists (cons clist1 rest)))
(if (any null? lists)
knil
(apply kons (append! lists (list (f (map cdr lists)))))))))
(define* (unfold p f g seed #:optional (tail-gen (lambda (x) '())))
(define (reverse+tail lst seed)
(let loop ((lst lst)
(result (tail-gen seed)))
(if (null? lst)
result
(loop (cdr lst)
(cons (car lst) result)))))
(check-arg procedure? p unfold)
(check-arg procedure? f unfold)
(check-arg procedure? g unfold)
(check-arg procedure? tail-gen unfold)
(let loop ((seed seed)
(result '()))
(if (p seed)
(reverse+tail result seed)
(loop (g seed)
(cons (f seed) result)))))
(define* (unfold-right p f g seed #:optional (tail '()))
(check-arg procedure? p unfold-right)
(check-arg procedure? f unfold-right)
(check-arg procedure? g unfold-right)
(let uf ((seed seed) (lis tail))
(if (p seed)
lis
(uf (g seed) (cons (f seed) lis)))))
(define (reduce f ridentity lst)
"`reduce' is a variant of `fold', where the first call to F is on two
elements from LST, rather than one element and a given initial value.
If LST is empty, RIDENTITY is returned. If LST has just one element
then that's the return value."
(check-arg procedure? f reduce)
(if (null? lst)
ridentity
(fold f (car lst) (cdr lst))))
(define (reduce-right f ridentity lst)
"`reduce-right' is a variant of `fold-right', where the first call to
F is on two elements from LST, rather than one element and a given
initial value. If LST is empty, RIDENTITY is returned. If LST
has just one element then that's the return value."
(check-arg procedure? f reduce)
(if (null? lst)
ridentity
(fold-right f (last lst) (drop-right lst 1))))
(define map
(case-lambda
((f l)
(check-arg procedure? f map)
(let map1 ((hare l) (tortoise l) (move? #f) (out '()))
(if (pair? hare)
(if move?
(if (eq? tortoise hare)
(scm-error 'wrong-type-arg "map" "Circular list: ~S"
(list l) #f)
(map1 (cdr hare) (cdr tortoise) #f
(cons (f (car hare)) out)))
(map1 (cdr hare) tortoise #t
(cons (f (car hare)) out)))
(if (null? hare)
(reverse! out)
(scm-error 'wrong-type-arg "map" "Not a list: ~S"
(list l) #f)))))
((f l1 . rest)
(check-arg procedure? f map)
(let ((len (fold (lambda (ls len)
(let ((ls-len (length+ ls)))
(if len
(if ls-len (min ls-len len) len)
ls-len)))
(length+ l1)
rest)))
(if (not len)
(scm-error 'wrong-type-arg "map"
"Args do not contain a proper (finite) list: ~S"
(list (cons l1 rest)) #f))
(let mapn ((l1 l1) (rest rest) (len len) (out '()))
(if (zero? len)
(reverse! out)
(mapn (cdr l1) (map cdr rest) (1- len)
(cons (apply f (car l1) (map car rest)) out))))))))
(define map-in-order map)
(define for-each
(case-lambda
((f l)
(check-arg procedure? f for-each)
(let for-each1 ((hare l) (tortoise l) (move? #f))
(if (pair? hare)
(if move?
(if (eq? tortoise hare)
(scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
(list l) #f)
(begin
(f (car hare))
(for-each1 (cdr hare) (cdr tortoise) #f)))
(begin
(f (car hare))
(for-each1 (cdr hare) tortoise #t)))
(if (not (null? hare))
(scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
(list l) #f)))))
((f l1 . rest)
(check-arg procedure? f for-each)
(let ((len (fold (lambda (ls len)
(let ((ls-len (length+ ls)))
(if len
(if ls-len (min ls-len len) len)
ls-len)))
(length+ l1)
rest)))
(if (not len)
(scm-error 'wrong-type-arg "for-each"
"Args do not contain a proper (finite) list: ~S"
(list (cons l1 rest)) #f))
(let for-eachn ((l1 l1) (rest rest) (len len))
(if (> len 0)
(begin
(apply f (car l1) (map car rest))
(for-eachn (cdr l1) (map cdr rest) (1- len)))))))))
(define (append-map f clist1 . rest)
(concatenate (apply map f clist1 rest)))
(define (append-map! f clist1 . rest)
(concatenate! (apply map f clist1 rest)))
;; OPTIMIZE-ME: Re-use cons cells of list1
(define map! map)
(define (filter-map proc list1 . rest)
"Apply PROC to the elements of LIST1... and return a list of the
results as per SRFI-1 `map', except that any #f results are omitted from
the list returned."
(check-arg procedure? proc filter-map)
(if (null? rest)
(let lp ((l list1)
(rl '()))
(if (null? l)
(reverse! rl)
(let ((res (proc (car l))))
(if res
(lp (cdr l) (cons res rl))
(lp (cdr l) rl)))))
(let lp ((l (cons list1 rest))
(rl '()))
(if (any1 null? l)
(reverse! rl)
(let ((res (apply proc (map car l))))
(if res
(lp (map cdr l) (cons res rl))
(lp (map cdr l) rl)))))))
(define (pair-for-each f clist1 . rest)
(check-arg procedure? f pair-for-each)
(if (null? rest)
(let lp ((l clist1))
(if (null? l)
(if #f #f)
(begin
(f l)
(lp (cdr l)))))
(let lp ((l (cons clist1 rest)))
(if (any1 null? l)
(if #f #f)
(begin
(apply f l)
(lp (map cdr l)))))))
;;; Searching
(define (take-while pred ls)
"Return a new list which is the longest initial prefix of LS whose
elements all satisfy the predicate PRED."
(check-arg procedure? pred take-while)
(cond ((null? ls) '())
((not (pred (car ls))) '())
(else
(let ((result (list (car ls))))
(let lp ((ls (cdr ls)) (p result))
(cond ((null? ls) result)
((not (pred (car ls))) result)
(else
(set-cdr! p (list (car ls)))
(lp (cdr ls) (cdr p)))))))))
(define (take-while! pred lst)
"Linear-update variant of `take-while'."
(check-arg procedure? pred take-while!)
(let loop ((prev #f)
(rest lst))
(cond ((null? rest)
lst)
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
'())))))
(define (drop-while pred lst)
"Drop the longest initial prefix of LST whose elements all satisfy the
predicate PRED."
(check-arg procedure? pred drop-while)
(let loop ((lst lst))
(cond ((null? lst)
'())
((pred (car lst))
(loop (cdr lst)))
(else lst))))
(define (span pred lst)
"Return two values, the longest initial prefix of LST whose elements
all satisfy the predicate PRED, and the remainder of LST."
(check-arg procedure? pred span)
(let lp ((lst lst) (rl '()))
(if (and (not (null? lst))
(pred (car lst)))
(lp (cdr lst) (cons (car lst) rl))
(values (reverse! rl) lst))))
(define (span! pred list)
"Linear-update variant of `span'."
(check-arg procedure? pred span!)
(let loop ((prev #f)
(rest list))
(cond ((null? rest)
(values list '()))
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list rest))
(values '() list))))))
(define (break pred clist)
"Return two values, the longest initial prefix of LST whose elements
all fail the predicate PRED, and the remainder of LST."
(check-arg procedure? pred break)
(let lp ((clist clist) (rl '()))
(if (or (null? clist)
(pred (car clist)))
(values (reverse! rl) clist)
(lp (cdr clist) (cons (car clist) rl)))))
(define (break! pred list)
"Linear-update variant of `break'."
(check-arg procedure? pred break!)
(let loop ((l list)
(prev #f))
(cond ((null? l)
(values list '()))
((pred (car l))
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list l))
(values '() list)))
(else
(loop (cdr l) l)))))
(define (any pred ls . lists)
(check-arg procedure? pred any)
(if (null? lists)
(any1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#f)
((any1 null? (map cdr lists))
(apply pred (map car lists)))
(else
(or (apply pred (map car lists)) (lp (map cdr lists))))))))
(define (any1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#f)
((null? (cdr ls))
(pred (car ls)))
(else
(or (pred (car ls)) (lp (cdr ls)))))))
(define (every pred ls . lists)
(check-arg procedure? pred every)
(if (null? lists)
(every1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#t)
((any1 null? (map cdr lists))
(apply pred (map car lists)))
(else
(and (apply pred (map car lists)) (lp (map cdr lists))))))))
(define (every1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#t)
((null? (cdr ls))
(pred (car ls)))
(else
(and (pred (car ls)) (lp (cdr ls)))))))
(define (list-index pred clist1 . rest)
"Return the index of the first set of elements, one from each of
CLIST1 ... CLISTN, that satisfies PRED."
(check-arg procedure? pred list-index)
(if (null? rest)
(let lp ((l clist1) (i 0))
(if (null? l)
#f
(if (pred (car l))
i
(lp (cdr l) (+ i 1)))))
(let lp ((lists (cons clist1 rest)) (i 0))
(cond ((any1 null? lists)
#f)
((apply pred (map car lists)) i)
(else
(lp (map cdr lists) (+ i 1)))))))
;;; Association lists
(define alist-cons acons)
(define (alist-copy alist)
"Return a copy of ALIST, copying both the pairs comprising the list
and those making the associations."
(let lp ((a alist)
(rl '()))
(if (null? a)
(reverse! rl)
(lp (cdr a) (alist-cons (caar a) (cdar a) rl)))))
(define* (alist-delete key alist #:optional (k= equal?))
(check-arg procedure? k= alist-delete)
(let lp ((a alist) (rl '()))
(if (null? a)
(reverse! rl)
(if (k= key (caar a))
(lp (cdr a) rl)
(lp (cdr a) (cons (car a) rl))))))
(define* (alist-delete! key alist #:optional (k= equal?))
(alist-delete key alist k=)) ; XXX:optimize
;;; Delete / assoc / member
(define* (member x ls #:optional (= equal?))
(cond
;; This might be performance-sensitive, so punt on the check here,
;; relying on memq/memv to check that = is a procedure.
((eq? = eq?) (memq x ls))
((eq? = eqv?) (memv x ls))
(else
(check-arg procedure? = member)
(find-tail (lambda (y) (= x y)) ls))))
;;; Set operations on lists
(define (lset<= = . rest)
(check-arg procedure? = lset<=)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(lp (car r) (cdr r)))))))
(define (lset= = . rest)
(check-arg procedure? = lset<=)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(every (lambda (el) (member el f (lambda (x y) (= y x)))) (car r))
(lp (car r) (cdr r)))))))
;; It's not quite clear if duplicates among the `rest' elements are meant to
;; be cast out. The spec says `=' is called as (= lstelem restelem),
;; suggesting perhaps not, but the reference implementation shows the "list"
;; at each stage as including those elements already added. The latter
;; corresponds to what's described for lset-union, so that's what's done.
;;
(define (lset-adjoin = list . rest)
"Add to LIST any of the elements of REST not already in the list.
These elements are `cons'ed onto the start of LIST (so the return shares
a common tail with LIST), but the order they're added is unspecified.
The given `=' procedure is used for comparing elements, called
as `(@var{=} listelem elem)', i.e., the second argument is one of the
given REST parameters."
;; If `=' is `eq?' or `eqv?', users won't be able to tell which arg is
;; first, so we can pass the raw procedure through to `member',
;; allowing `memq' / `memv' to be selected.
(define pred
(if (or (eq? = eq?) (eq? = eqv?))
=
(begin
(check-arg procedure? = lset-adjoin)
(lambda (x y) (= y x)))))
(let lp ((ans list) (rest rest))
(if (null? rest)
ans
(lp (if (member (car rest) ans pred)
ans
(cons (car rest) ans))
(cdr rest)))))
(define (lset-union = . rest)
;; Likewise, allow memq / memv to be used if possible.
(define pred
(if (or (eq? = eq?) (eq? = eqv?))
=
(begin
(check-arg procedure? = lset-union)
(lambda (x y) (= y x)))))
(fold (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans)
(if (member elt ans pred)
ans
(cons elt ans)))
ans lis))))
'()
rest))
(define (lset-intersection = list1 . rest)
(check-arg procedure? = lset-intersection)
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (every (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) (cons (car l) acc))
(lp (cdr l) acc)))))
(define (lset-difference = list1 . rest)
(check-arg procedure? = lset-difference)
(if (null? rest)
list1
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (any (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc)))))))
;(define (fold kons knil list1 . rest)
(define (lset-xor = . rest)
(check-arg procedure? = lset-xor)
(fold (lambda (lst res)
(let lp ((l lst) (acc '()))
(if (null? l)
(let lp0 ((r res) (acc acc))
(if (null? r)
(reverse! acc)
(if (member (car r) lst =)
(lp0 (cdr r) acc)
(lp0 (cdr r) (cons (car r) acc)))))
(if (member (car l) res =)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc))))))
'()
rest))
(define (lset-diff+intersection = list1 . rest)
(check-arg procedure? = lset-diff+intersection)
(let lp ((l list1) (accd '()) (acci '()))
(if (null? l)
(values (reverse! accd) (reverse! acci))
(let ((appears (every (lambda (ll) (member (car l) ll =)) rest)))
(if appears
(lp (cdr l) accd (cons (car l) acci))
(lp (cdr l) (cons (car l) accd) acci))))))
(define (lset-union! = . rest)
(check-arg procedure? = lset-union!)
(apply lset-union = rest)) ; XXX:optimize
(define (lset-intersection! = list1 . rest)
(check-arg procedure? = lset-intersection!)
(apply lset-intersection = list1 rest)) ; XXX:optimize
(define (lset-xor! = . rest)
(check-arg procedure? = lset-xor!)
(apply lset-xor = rest)) ; XXX:optimize
(define (lset-diff+intersection! = list1 . rest)
(check-arg procedure? = lset-diff+intersection!)
(apply lset-diff+intersection = list1 rest)) ; XXX:optimize
;;; srfi-1.scm ends here
|