1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
|
;;; TREE-IL -> GLIL compiler
;; Copyright (C) 2001, 2008-2014 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Code:
(define-module (language tree-il analyze)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:use-module (ice-9 vlist)
#:use-module (ice-9 match)
#:use-module (system base syntax)
#:use-module (system base message)
#:use-module (system vm program)
#:use-module (language tree-il)
#:use-module (system base pmatch)
#:export (analyze-lexicals
analyze-tree
unused-variable-analysis
unused-toplevel-analysis
unbound-variable-analysis
macro-use-before-definition-analysis
arity-analysis
format-analysis))
;; Allocation is the process of assigning storage locations for lexical
;; variables. A lexical variable has a distinct "address", or storage
;; location, for each procedure in which it is referenced.
;;
;; A variable is "local", i.e., allocated on the stack, if it is
;; referenced from within the procedure that defined it. Otherwise it is
;; a "closure" variable. For example:
;;
;; (lambda (a) a) ; a will be local
;; `a' is local to the procedure.
;;
;; (lambda (a) (lambda () a))
;; `a' is local to the outer procedure, but a closure variable with
;; respect to the inner procedure.
;;
;; If a variable is ever assigned, it needs to be heap-allocated
;; ("boxed"). This is so that closures and continuations capture the
;; variable's identity, not just one of the values it may have over the
;; course of program execution. If the variable is never assigned, there
;; is no distinction between value and identity, so closing over its
;; identity (whether through closures or continuations) can make a copy
;; of its value instead.
;;
;; Local variables are stored on the stack within a procedure's call
;; frame. Their index into the stack is determined from their linear
;; postion within a procedure's binding path:
;; (let (0 1)
;; (let (2 3) ...)
;; (let (2) ...))
;; (let (2 3 4) ...))
;; etc.
;;
;; This algorithm has the problem that variables are only allocated
;; indices at the end of the binding path. If variables bound early in
;; the path are not used in later portions of the path, their indices
;; will not be recycled. This problem is particularly egregious in the
;; expansion of `or':
;;
;; (or x y z)
;; -> (let ((a x)) (if a a (let ((b y)) (if b b z))))
;;
;; As you can see, the `a' binding is only used in the ephemeral
;; `consequent' clause of the first `if', but its index would be
;; reserved for the whole of the `or' expansion. So we have a hack for
;; this specific case. A proper solution would be some sort of liveness
;; analysis, and not our linear allocation algorithm.
;;
;; Closure variables are captured when a closure is created, and stored in a
;; vector inline to the closure object itself. Each closure variable has a
;; unique index into that vector.
;;
;; There is one more complication. Procedures bound by <fix> may, in
;; some cases, be rendered inline to their parent procedure. That is to
;; say,
;;
;; (letrec ((lp (lambda () (lp)))) (lp))
;; => (fix ((lp (lambda () (lp)))) (lp))
;; => goto FIX-BODY; LP: goto LP; FIX-BODY: goto LP;
;; ^ jump over the loop ^ the fixpoint lp ^ starting off the loop
;;
;; The upshot is that we don't have to allocate any space for the `lp'
;; closure at all, as it can be rendered inline as a loop. So there is
;; another kind of allocation, "label allocation", in which the
;; procedure is simply a label, placed at the start of the lambda body.
;; The label is the gensym under which the lambda expression is bound.
;;
;; The analyzer checks to see that the label is called with the correct
;; number of arguments. Calls to labels compile to rename + goto.
;; Lambda, the ultimate goto!
;;
;;
;; The return value of `analyze-lexicals' is a hash table, the
;; "allocation".
;;
;; The allocation maps gensyms -- recall that each lexically bound
;; variable has a unique gensym -- to storage locations ("addresses").
;; Since one gensym may have many storage locations, if it is referenced
;; in many procedures, it is a two-level map.
;;
;; The allocation also stored information on how many local variables
;; need to be allocated for each procedure, lexicals that have been
;; translated into labels, and information on what free variables to
;; capture from its lexical parent procedure.
;;
;; In addition, we have a conflation: while we're traversing the code,
;; recording information to pass to the compiler, we take the
;; opportunity to generate labels for each lambda-case clause, so that
;; generated code can skip argument checks at runtime if they match at
;; compile-time.
;;
;; Also, while we're a-traversing and an-allocating, we check prompt
;; handlers to see if the "continuation" argument is used. If not, we
;; mark the prompt as being "escape-only". This allows us to implement
;; `catch' and `throw' using `prompt' and `control', but without causing
;; a continuation to be reified. Heh heh.
;;
;; That is:
;;
;; sym -> {lambda -> address}
;; lambda -> (labels . free-locs)
;; lambda-case -> (gensym . nlocs)
;; prompt -> escape-only?
;;
;; address ::= (local? boxed? . index)
;; labels ::= ((sym . lambda) ...)
;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
;; free variable addresses are relative to parent proc.
(define (make-hashq k v)
(let ((res (make-hash-table)))
(hashq-set! res k v)
res))
(define (analyze-lexicals x)
;; bound-vars: lambda -> (sym ...)
;; all identifiers bound within a lambda
(define bound-vars (make-hash-table))
;; free-vars: lambda -> (sym ...)
;; all identifiers referenced in a lambda, but not bound
;; NB, this includes identifiers referenced by contained lambdas
(define free-vars (make-hash-table))
;; assigned: sym -> #t
;; variables that are assigned
(define assigned (make-hash-table))
;; refcounts: sym -> count
;; allows us to detect the or-expansion in O(1) time
(define refcounts (make-hash-table))
;; labels: sym -> lambda
;; for determining if fixed-point procedures can be rendered as
;; labels.
(define labels (make-hash-table))
;; returns variables referenced in expr
(define (analyze! x proc labels-in-proc tail? tail-call-args)
(define (step y) (analyze! y proc '() #f #f))
(define (step-tail y) (analyze! y proc labels-in-proc tail? #f))
(define (step-tail-call y args) (analyze! y proc labels-in-proc #f
(and tail? args)))
(define (recur/labels x new-proc labels)
(analyze! x new-proc (append labels labels-in-proc) #t #f))
(define (recur x new-proc) (analyze! x new-proc '() tail? #f))
(record-case x
((<call> proc args)
(apply lset-union eq? (step-tail-call proc args)
(map step args)))
((<primcall> args)
(apply lset-union eq? (map step args)))
((<conditional> test consequent alternate)
(lset-union eq? (step test) (step-tail consequent) (step-tail alternate)))
((<lexical-ref> gensym)
(hashq-set! refcounts gensym (1+ (hashq-ref refcounts gensym 0)))
(if (not (and tail-call-args
(memq gensym labels-in-proc)
(let ((p (hashq-ref labels gensym)))
(and p
(let lp ((c (lambda-body p)))
(and c (lambda-case? c)
(or
;; for now prohibit optional &
;; keyword arguments; can relax this
;; restriction later
(and (= (length (lambda-case-req c))
(length tail-call-args))
(not (lambda-case-opt c))
(not (lambda-case-kw c))
(not (lambda-case-rest c)))
(lp (lambda-case-alternate c)))))))))
(hashq-set! labels gensym #f))
(list gensym))
((<lexical-set> gensym exp)
(hashq-set! assigned gensym #t)
(hashq-set! labels gensym #f)
(lset-adjoin eq? (step exp) gensym))
((<module-set> exp)
(step exp))
((<toplevel-set> exp)
(step exp))
((<toplevel-define> exp)
(step exp))
((<seq> head tail)
(lset-union eq? (step head) (step-tail tail)))
((<lambda> body)
;; order is important here
(hashq-set! bound-vars x '())
(let ((free (recur body x)))
(hashq-set! bound-vars x (reverse! (hashq-ref bound-vars x)))
(hashq-set! free-vars x free)
free))
((<lambda-case> opt kw inits gensyms body alternate)
(hashq-set! bound-vars proc
(append (reverse gensyms) (hashq-ref bound-vars proc)))
(lset-union
eq?
(lset-difference eq?
(lset-union eq?
(apply lset-union eq? (map step inits))
(step-tail body))
gensyms)
(if alternate (step-tail alternate) '())))
((<let> gensyms vals body)
(hashq-set! bound-vars proc
(append (reverse gensyms) (hashq-ref bound-vars proc)))
(lset-difference eq?
(apply lset-union eq? (step-tail body) (map step vals))
gensyms))
((<letrec> gensyms vals body)
(hashq-set! bound-vars proc
(append (reverse gensyms) (hashq-ref bound-vars proc)))
(for-each (lambda (sym) (hashq-set! assigned sym #t)) gensyms)
(lset-difference eq?
(apply lset-union eq? (step-tail body) (map step vals))
gensyms))
((<fix> gensyms vals body)
;; Try to allocate these procedures as labels.
(for-each (lambda (sym val) (hashq-set! labels sym val))
gensyms vals)
(hashq-set! bound-vars proc
(append (reverse gensyms) (hashq-ref bound-vars proc)))
;; Step into subexpressions.
(let* ((var-refs
(map
;; Since we're trying to label-allocate the lambda,
;; pretend it's not a closure, and just recurse into its
;; body directly. (Otherwise, recursing on a closure
;; that references one of the fix's bound vars would
;; prevent label allocation.)
(lambda (x)
(record-case x
((<lambda> body)
;; just like the closure case, except here we use
;; recur/labels instead of recur
(hashq-set! bound-vars x '())
(let ((free (recur/labels body x gensyms)))
(hashq-set! bound-vars x (reverse! (hashq-ref bound-vars x)))
(hashq-set! free-vars x free)
free))))
vals))
(vars-with-refs (map cons gensyms var-refs))
(body-refs (recur/labels body proc gensyms)))
(define (delabel-dependents! sym)
(let ((refs (assq-ref vars-with-refs sym)))
(if refs
(for-each (lambda (sym)
(if (hashq-ref labels sym)
(begin
(hashq-set! labels sym #f)
(delabel-dependents! sym))))
refs))))
;; Stepping into the lambdas and the body might have made some
;; procedures not label-allocatable -- which might have
;; knock-on effects. For example:
;; (fix ((a (lambda () (b)))
;; (b (lambda () a)))
;; (a))
;; As far as `a' is concerned, both `a' and `b' are
;; label-allocatable. But `b' references `a' not in a proc-tail
;; position, which makes `a' not label-allocatable. The
;; knock-on effect is that, when back-propagating this
;; information to `a', `b' will also become not
;; label-allocatable, as it is referenced within `a', which is
;; allocated as a closure. This is a transitive relationship.
(for-each (lambda (sym)
(if (not (hashq-ref labels sym))
(delabel-dependents! sym)))
gensyms)
;; Now lift bound variables with label-allocated lambdas to the
;; parent procedure.
(for-each
(lambda (sym val)
(if (hashq-ref labels sym)
;; Remove traces of the label-bound lambda. The free
;; vars will propagate up via the return val.
(begin
(hashq-set! bound-vars proc
(append (hashq-ref bound-vars val)
(hashq-ref bound-vars proc)))
(hashq-remove! bound-vars val)
(hashq-remove! free-vars val))))
gensyms vals)
(lset-difference eq?
(apply lset-union eq? body-refs var-refs)
gensyms)))
((<let-values> exp body)
(lset-union eq? (step exp) (step body)))
((<prompt> escape-only? tag body handler)
(match handler
(($ <lambda> _ _ handler)
(lset-union eq? (step tag) (step body) (step-tail handler)))))
((<abort> tag args tail)
(apply lset-union eq? (step tag) (step tail) (map step args)))
(else '())))
;; allocation: sym -> {lambda -> address}
;; lambda -> (labels . free-locs)
;; lambda-case -> (gensym . nlocs)
(define allocation (make-hash-table))
(define (allocate! x proc n)
(define (recur y) (allocate! y proc n))
(record-case x
((<call> proc args)
(apply max (recur proc) (map recur args)))
((<primcall> args)
(apply max n (map recur args)))
((<conditional> test consequent alternate)
(max (recur test) (recur consequent) (recur alternate)))
((<lexical-set> exp)
(recur exp))
((<module-set> exp)
(recur exp))
((<toplevel-set> exp)
(recur exp))
((<toplevel-define> exp)
(recur exp))
((<seq> head tail)
(max (recur head)
(recur tail)))
((<lambda> body)
;; allocate closure vars in order
(let lp ((c (hashq-ref free-vars x)) (n 0))
(if (pair? c)
(begin
(hashq-set! (hashq-ref allocation (car c))
x
`(#f ,(hashq-ref assigned (car c)) . ,n))
(lp (cdr c) (1+ n)))))
(let ((nlocs (allocate! body x 0))
(free-addresses
(map (lambda (v)
(hashq-ref (hashq-ref allocation v) proc))
(hashq-ref free-vars x)))
(labels (filter cdr
(map (lambda (sym)
(cons sym (hashq-ref labels sym)))
(hashq-ref bound-vars x)))))
;; set procedure allocations
(hashq-set! allocation x (cons labels free-addresses)))
n)
((<lambda-case> opt kw inits gensyms body alternate)
(max
(let lp ((gensyms gensyms) (n n))
(if (null? gensyms)
(let ((nlocs (apply
max
(allocate! body proc n)
;; inits not logically at the end, but they
;; are the list...
(map (lambda (x) (allocate! x proc n)) inits))))
;; label and nlocs for the case
(hashq-set! allocation x (cons (gensym ":LCASE") nlocs))
nlocs)
(begin
(hashq-set! allocation (car gensyms)
(make-hashq
proc `(#t ,(hashq-ref assigned (car gensyms)) . ,n)))
(lp (cdr gensyms) (1+ n)))))
(if alternate (allocate! alternate proc n) n)))
((<let> gensyms vals body)
(let ((nmax (apply max (map recur vals))))
(cond
;; the `or' hack
((and (conditional? body)
(= (length gensyms) 1)
(let ((v (car gensyms)))
(and (not (hashq-ref assigned v))
(= (hashq-ref refcounts v 0) 2)
(lexical-ref? (conditional-test body))
(eq? (lexical-ref-gensym (conditional-test body)) v)
(lexical-ref? (conditional-consequent body))
(eq? (lexical-ref-gensym (conditional-consequent body)) v))))
(hashq-set! allocation (car gensyms)
(make-hashq proc `(#t #f . ,n)))
;; the 1+ for this var
(max nmax (1+ n) (allocate! (conditional-alternate body) proc n)))
(else
(let lp ((gensyms gensyms) (n n))
(if (null? gensyms)
(max nmax (allocate! body proc n))
(let ((v (car gensyms)))
(hashq-set!
allocation v
(make-hashq proc
`(#t ,(hashq-ref assigned v) . ,n)))
(lp (cdr gensyms) (1+ n)))))))))
((<letrec> gensyms vals body)
(let lp ((gensyms gensyms) (n n))
(if (null? gensyms)
(let ((nmax (apply max
(map (lambda (x)
(allocate! x proc n))
vals))))
(max nmax (allocate! body proc n)))
(let ((v (car gensyms)))
(hashq-set!
allocation v
(make-hashq proc
`(#t ,(hashq-ref assigned v) . ,n)))
(lp (cdr gensyms) (1+ n))))))
((<fix> gensyms vals body)
(let lp ((in gensyms) (n n))
(if (null? in)
(let lp ((gensyms gensyms) (vals vals) (nmax n))
(cond
((null? gensyms)
(max nmax (allocate! body proc n)))
((hashq-ref labels (car gensyms))
;; allocate lambda body inline to proc
(lp (cdr gensyms)
(cdr vals)
(record-case (car vals)
((<lambda> body)
(max nmax (allocate! body proc n))))))
(else
;; allocate closure
(lp (cdr gensyms)
(cdr vals)
(max nmax (allocate! (car vals) proc n))))))
(let ((v (car in)))
(cond
((hashq-ref assigned v)
(error "fixpoint procedures may not be assigned" x))
((hashq-ref labels v)
;; no binding, it's a label
(lp (cdr in) n))
(else
;; allocate closure binding
(hashq-set! allocation v (make-hashq proc `(#t #f . ,n)))
(lp (cdr in) (1+ n))))))))
((<let-values> exp body)
(max (recur exp) (recur body)))
((<prompt> escape-only? tag body handler)
(match handler
(($ <lambda> _ _ handler)
(max (recur tag) (recur body) (recur handler)))))
((<abort> tag args tail)
(apply max (recur tag) (recur tail) (map recur args)))
(else n)))
(analyze! x #f '() #t #f)
(allocate! x #f 0)
allocation)
;;;
;;; Tree analyses for warnings.
;;;
(define-record-type <tree-analysis>
(make-tree-analysis down up post init)
tree-analysis?
(down tree-analysis-down) ;; (lambda (x result env locs) ...)
(up tree-analysis-up) ;; (lambda (x result env locs) ...)
(post tree-analysis-post) ;; (lambda (result env) ...)
(init tree-analysis-init)) ;; arbitrary value
(define (analyze-tree analyses tree env)
"Run all tree analyses listed in ANALYSES on TREE for ENV, using
`tree-il-fold'. Return TREE. The down and up procedures of each
analysis are passed a ``location stack', which is the stack of
`tree-il-src' values for each parent tree (a list); it can be used to
approximate source location when accurate information is missing from a
given `tree-il' element."
(define (traverse proc update-locs)
;; Return a tree traversing procedure that returns a list of analysis
;; results prepended by the location stack.
(lambda (x results)
(let ((locs (update-locs x (car results))))
(cons locs ;; the location stack
(map (lambda (analysis result)
((proc analysis) x result env locs))
analyses
(cdr results))))))
;; Extending and shrinking the location stack.
(define (extend-locs x locs) (cons (tree-il-src x) locs))
(define (shrink-locs x locs) (cdr locs))
(let ((results
(tree-il-fold (traverse tree-analysis-down extend-locs)
(traverse tree-analysis-up shrink-locs)
(cons '() ;; empty location stack
(map tree-analysis-init analyses))
tree)))
(for-each (lambda (analysis result)
((tree-analysis-post analysis) result env))
analyses
(cdr results)))
tree)
;;;
;;; Unused variable analysis.
;;;
;; <binding-info> records are used during tree traversals in
;; `unused-variable-analysis'. They contain a list of the local vars
;; currently in scope, and a list of locals vars that have been referenced.
(define-record-type <binding-info>
(make-binding-info vars refs)
binding-info?
(vars binding-info-vars) ;; ((GENSYM NAME LOCATION) ...)
(refs binding-info-refs)) ;; (GENSYM ...)
(define (gensym? sym)
;; Return #t if SYM is (likely) a generated symbol.
(string-any #\space (symbol->string sym)))
(define unused-variable-analysis
;; Report unused variables in the given tree.
(make-tree-analysis
(lambda (x info env locs)
;; Going down into X: extend INFO's variable list
;; accordingly.
(let ((refs (binding-info-refs info))
(vars (binding-info-vars info))
(src (tree-il-src x)))
(define (extend inner-vars inner-names)
(fold (lambda (var name vars)
(vhash-consq var (list name src) vars))
vars
inner-vars
inner-names))
(record-case x
((<lexical-ref> gensym)
(make-binding-info vars (vhash-consq gensym #t refs)))
((<lexical-set> gensym)
(make-binding-info vars (vhash-consq gensym #t refs)))
((<lambda-case> req opt inits rest kw gensyms)
(let ((names `(,@req
,@(or opt '())
,@(if rest (list rest) '())
,@(if kw (map cadr (cdr kw)) '()))))
(make-binding-info (extend gensyms names) refs)))
((<let> gensyms names)
(make-binding-info (extend gensyms names) refs))
((<letrec> gensyms names)
(make-binding-info (extend gensyms names) refs))
((<fix> gensyms names)
(make-binding-info (extend gensyms names) refs))
(else info))))
(lambda (x info env locs)
;; Leaving X's scope: shrink INFO's variable list
;; accordingly and reported unused nested variables.
(let ((refs (binding-info-refs info))
(vars (binding-info-vars info)))
(define (shrink inner-vars refs)
(vlist-for-each
(lambda (var)
(let ((gensym (car var)))
;; Don't report lambda parameters as unused.
(if (and (memq gensym inner-vars)
(not (vhash-assq gensym refs))
(not (lambda-case? x)))
(let ((name (cadr var))
;; We can get approximate source location by going up
;; the LOCS location stack.
(loc (or (caddr var)
(find pair? locs))))
(if (and (not (gensym? name))
(not (eq? name '_)))
(warning 'unused-variable loc name))))))
vars)
(vlist-drop vars (length inner-vars)))
;; For simplicity, we leave REFS untouched, i.e., with
;; names of variables that are now going out of scope.
;; It doesn't hurt as these are unique names, it just
;; makes REFS unnecessarily fat.
(record-case x
((<lambda-case> gensyms)
(make-binding-info (shrink gensyms refs) refs))
((<let> gensyms)
(make-binding-info (shrink gensyms refs) refs))
((<letrec> gensyms)
(make-binding-info (shrink gensyms refs) refs))
((<fix> gensyms)
(make-binding-info (shrink gensyms refs) refs))
(else info))))
(lambda (result env) #t)
(make-binding-info vlist-null vlist-null)))
;;;
;;; Unused top-level variable analysis.
;;;
;; <reference-graph> record top-level definitions that are made, references to
;; top-level definitions and their context (the top-level definition in which
;; the reference appears), as well as the current context (the top-level
;; definition we're currently in). The second part (`refs' below) is
;; effectively a graph from which we can determine unused top-level definitions.
(define-record-type <reference-graph>
(make-reference-graph refs defs toplevel-context)
reference-graph?
(defs reference-graph-defs) ;; ((NAME . LOC) ...)
(refs reference-graph-refs) ;; ((REF-CONTEXT REF ...) ...)
(toplevel-context reference-graph-toplevel-context)) ;; NAME | #f
(define (graph-reachable-nodes root refs reachable)
;; Add to REACHABLE the nodes reachable from ROOT in graph REFS. REFS is a
;; vhash mapping nodes to the list of their children: for instance,
;; ((A -> (B C)) (B -> (A)) (C -> ())) corresponds to
;;
;; ,-------.
;; v |
;; A ----> B
;; |
;; v
;; C
;;
;; REACHABLE is a vhash of nodes known to be otherwise reachable.
(let loop ((root root)
(path vlist-null)
(result reachable))
(if (or (vhash-assq root path)
(vhash-assq root result))
result
(let* ((children (or (and=> (vhash-assq root refs) cdr) '()))
(path (vhash-consq root #t path))
(result (fold (lambda (kid result)
(loop kid path result))
result
children)))
(fold (lambda (kid result)
(vhash-consq kid #t result))
result
children)))))
(define (graph-reachable-nodes* roots refs)
;; Return the list of nodes in REFS reachable from the nodes listed in ROOTS.
(vlist-fold (lambda (root+true result)
(let* ((root (car root+true))
(reachable (graph-reachable-nodes root refs result)))
(vhash-consq root #t reachable)))
vlist-null
roots))
(define (partition* pred vhash)
;; Partition VHASH according to PRED. Return the two resulting vhashes.
(let ((result
(vlist-fold (lambda (k+v result)
(let ((k (car k+v))
(v (cdr k+v))
(r1 (car result))
(r2 (cdr result)))
(if (pred k)
(cons (vhash-consq k v r1) r2)
(cons r1 (vhash-consq k v r2)))))
(cons vlist-null vlist-null)
vhash)))
(values (car result) (cdr result))))
(define unused-toplevel-analysis
;; Report unused top-level definitions that are not exported.
(let ((add-ref-from-context
(lambda (graph name)
;; Add an edge CTX -> NAME in GRAPH.
(let* ((refs (reference-graph-refs graph))
(defs (reference-graph-defs graph))
(ctx (reference-graph-toplevel-context graph))
(ctx-refs (or (and=> (vhash-assq ctx refs) cdr) '())))
(make-reference-graph (vhash-consq ctx (cons name ctx-refs) refs)
defs ctx)))))
(define (macro-variable? name env)
(and (module? env)
(let ((var (module-variable env name)))
(and var (variable-bound? var)
(macro? (variable-ref var))))))
(make-tree-analysis
(lambda (x graph env locs)
;; Going down into X.
(let ((ctx (reference-graph-toplevel-context graph))
(refs (reference-graph-refs graph))
(defs (reference-graph-defs graph)))
(record-case x
((<toplevel-ref> name src)
(add-ref-from-context graph name))
((<toplevel-define> name src)
(let ((refs refs)
(defs (vhash-consq name (or src (find pair? locs))
defs)))
(make-reference-graph refs defs name)))
((<toplevel-set> name src)
(add-ref-from-context graph name))
(else graph))))
(lambda (x graph env locs)
;; Leaving X's scope.
(record-case x
((<toplevel-define>)
(let ((refs (reference-graph-refs graph))
(defs (reference-graph-defs graph)))
(make-reference-graph refs defs #f)))
(else graph)))
(lambda (graph env)
;; Process the resulting reference graph: determine all private definitions
;; not reachable from any public definition. Macros
;; (syntax-transformers), which are globally bound, never considered
;; unused since we can't tell whether a macro is actually used; in
;; addition, macros are considered roots of the graph since they may use
;; private bindings. FIXME: The `make-syntax-transformer' calls don't
;; contain any literal `toplevel-ref' of the global bindings they use so
;; this strategy fails.
(define (exported? name)
(if (module? env)
(module-variable (module-public-interface env) name)
#t))
(let-values (((public-defs private-defs)
(partition* (lambda (name)
(or (exported? name)
(macro-variable? name env)))
(reference-graph-defs graph))))
(let* ((roots (vhash-consq #f #t public-defs))
(refs (reference-graph-refs graph))
(reachable (graph-reachable-nodes* roots refs))
(unused (vlist-filter (lambda (name+src)
(not (vhash-assq (car name+src)
reachable)))
private-defs)))
(vlist-for-each (lambda (name+loc)
(let ((name (car name+loc))
(loc (cdr name+loc)))
(if (not (gensym? name))
(warning 'unused-toplevel loc name))))
unused))))
(make-reference-graph vlist-null vlist-null #f))))
;;;
;;; Unbound variable analysis.
;;;
;; <toplevel-info> records are used during tree traversal in search of
;; possibly unbound variable. They contain a list of references to
;; potentially unbound top-level variables, and a list of the top-level
;; defines that have been encountered.
(define-record-type <toplevel-info>
(make-toplevel-info refs defs)
toplevel-info?
(refs toplevel-info-refs) ;; ((VARIABLE-NAME . LOCATION) ...)
(defs toplevel-info-defs)) ;; (VARIABLE-NAME ...)
(define (goops-toplevel-definition proc args env)
;; If call of PROC to ARGS is a GOOPS top-level definition, return
;; the name of the variable being defined; otherwise return #f. This
;; assumes knowledge of the current implementation of `define-class' et al.
(define (toplevel-define-arg args)
(match args
((($ <const> _ (and (? symbol?) exp)) _)
exp)
(_ #f)))
(match proc
(($ <module-ref> _ '(oop goops) 'toplevel-define! #f)
(toplevel-define-arg args))
(($ <toplevel-ref> _ 'toplevel-define!)
;; This may be the result of expanding one of the GOOPS macros within
;; `oop/goops.scm'.
(and (eq? env (resolve-module '(oop goops)))
(toplevel-define-arg args)))
(_ #f)))
(define unbound-variable-analysis
;; Report possibly unbound variables in the given tree.
(make-tree-analysis
(lambda (x info env locs)
;; Going down into X.
(let* ((refs (toplevel-info-refs info))
(defs (toplevel-info-defs info))
(src (tree-il-src x)))
(define (bound? name)
(or (and (module? env)
(module-variable env name))
(vhash-assq name defs)))
(record-case x
((<toplevel-ref> name src)
(if (bound? name)
info
(let ((src (or src (find pair? locs))))
(make-toplevel-info (vhash-consq name src refs)
defs))))
((<toplevel-set> name src)
(if (bound? name)
(make-toplevel-info refs defs)
(let ((src (find pair? locs)))
(make-toplevel-info (vhash-consq name src refs)
defs))))
((<toplevel-define> name)
(make-toplevel-info (vhash-delq name refs)
(vhash-consq name #t defs)))
((<call> proc args)
;; Check for a dynamic top-level definition, as is
;; done by code expanded from GOOPS macros.
(let ((name (goops-toplevel-definition proc args
env)))
(if (symbol? name)
(make-toplevel-info (vhash-delq name refs)
(vhash-consq name #t defs))
(make-toplevel-info refs defs))))
(else
(make-toplevel-info refs defs)))))
(lambda (x info env locs)
;; Leaving X's scope.
info)
(lambda (toplevel env)
;; Post-process the result.
(vlist-for-each (match-lambda
((name . loc)
(warning 'unbound-variable loc name)))
(vlist-reverse (toplevel-info-refs toplevel))))
(make-toplevel-info vlist-null vlist-null)))
;;;
;;; Macro use-before-definition analysis.
;;;
;; <macro-use-info> records are used during tree traversal in search of
;; possibly uses of macros before they are defined. They contain a list
;; of references to top-level variables, and a list of the top-level
;; macro definitions that have been encountered. Any definition which
;; is a macro should in theory be expanded out already; if that's not
;; the case, the program likely has a bug.
(define-record-type <macro-use-info>
(make-macro-use-info uses defs)
macro-use-info?
(uses macro-use-info-uses) ;; ((VARIABLE-NAME . LOCATION) ...)
(defs macro-use-info-defs)) ;; ((VARIABLE-NAME . LOCATION) ...)
(define macro-use-before-definition-analysis
;; Report possibly unbound variables in the given tree.
(make-tree-analysis
(lambda (x info env locs)
;; Going down into X.
(define (nearest-loc src)
(or src (find pair? locs)))
(define (add-use name src)
(match info
(($ <macro-use-info> uses defs)
(make-macro-use-info (vhash-consq name src uses) defs))))
(define (add-def name src)
(match info
(($ <macro-use-info> uses defs)
(make-macro-use-info uses (vhash-consq name src defs)))))
(define (macro? x)
(match x
(($ <primcall> _ 'make-syntax-transformer) #t)
(_ #f)))
(match x
(($ <toplevel-ref> src name)
(add-use name (nearest-loc src)))
(($ <toplevel-set> src name)
(add-use name (nearest-loc src)))
(($ <toplevel-define> src name (? macro?))
(add-def name (nearest-loc src)))
(_ info)))
(lambda (x info env locs)
;; Leaving X's scope.
info)
(lambda (info env)
;; Post-process the result.
(match info
(($ <macro-use-info> uses defs)
(vlist-for-each
(match-lambda
((name . use-loc)
(when (vhash-assq name defs)
(warning 'macro-use-before-definition use-loc name))))
(vlist-reverse (macro-use-info-uses info))))))
(make-macro-use-info vlist-null vlist-null)))
;;;
;;; Arity analysis.
;;;
;; <arity-info> records contain information about lexical definitions of
;; procedures currently in scope, top-level procedure definitions that have
;; been encountered, and calls to top-level procedures that have been
;; encountered.
(define-record-type <arity-info>
(make-arity-info toplevel-calls lexical-lambdas toplevel-lambdas)
arity-info?
(toplevel-calls toplevel-procedure-calls) ;; ((NAME . CALL) ...)
(lexical-lambdas lexical-lambdas) ;; ((GENSYM . DEFINITION) ...)
(toplevel-lambdas toplevel-lambdas)) ;; ((NAME . DEFINITION) ...)
(define (validate-arity proc call lexical?)
;; Validate the argument count of CALL, a tree-il call of
;; PROC, emitting a warning in case of argument count mismatch.
(define (filter-keyword-args keywords allow-other-keys? args)
;; Filter keyword arguments from ARGS and return the resulting list.
;; KEYWORDS is the list of allowed keywords, and ALLOW-OTHER-KEYS?
;; specified whethere keywords not listed in KEYWORDS are allowed.
(let loop ((args args)
(result '()))
(if (null? args)
(reverse result)
(let ((arg (car args)))
(if (and (const? arg)
(or (memq (const-exp arg) keywords)
(and allow-other-keys?
(keyword? (const-exp arg)))))
(loop (if (pair? (cdr args))
(cddr args)
'())
result)
(loop (cdr args)
(cons arg result)))))))
(define (arities proc)
;; Return the arities of PROC, which can be either a tree-il or a
;; procedure.
(define (len x)
(or (and (or (null? x) (pair? x))
(length x))
0))
(cond ((program? proc)
(values (procedure-name proc)
(map (lambda (a)
(list (length (or (assq-ref a 'required) '()))
(length (or (assq-ref a 'optional) '()))
(and (assq-ref a 'rest) #t)
(map car (or (assq-ref a 'keyword) '()))
(assq-ref a 'allow-other-keys?)))
(program-arguments-alists proc))))
((procedure? proc)
(if (struct? proc)
;; An applicable struct.
(arities (struct-ref proc 0))
;; An applicable smob.
(let ((arity (procedure-minimum-arity proc)))
(values (procedure-name proc)
(list (list (car arity) (cadr arity) (caddr arity)
#f #f))))))
(else
(let loop ((name #f)
(proc proc)
(arities '()))
(if (not proc)
(values name (reverse arities))
(record-case proc
((<lambda-case> req opt rest kw alternate)
(loop name alternate
(cons (list (len req) (len opt) rest
(and (pair? kw) (map car (cdr kw)))
(and (pair? kw) (car kw)))
arities)))
((<lambda> meta body)
(loop (assoc-ref meta 'name) body arities))
(else
(values #f #f))))))))
(let ((args (call-args call))
(src (tree-il-src call)))
(call-with-values (lambda () (arities proc))
(lambda (name arities)
(define matches?
(find (lambda (arity)
(pmatch arity
((,req ,opt ,rest? ,kw ,aok?)
(let ((args (if (pair? kw)
(filter-keyword-args kw aok? args)
args)))
(if (and req opt)
(let ((count (length args)))
(and (>= count req)
(or rest?
(<= count (+ req opt)))))
#t)))
(else #t)))
arities))
(if (not matches?)
(warning 'arity-mismatch src
(or name (with-output-to-string (lambda () (write proc))))
lexical?)))))
#t)
(define arity-analysis
;; Report arity mismatches in the given tree.
(make-tree-analysis
(lambda (x info env locs)
;; Down into X.
(define (extend lexical-name val info)
;; If VAL is a lambda, add NAME to the lexical-lambdas of INFO.
(let ((toplevel-calls (toplevel-procedure-calls info))
(lexical-lambdas (lexical-lambdas info))
(toplevel-lambdas (toplevel-lambdas info)))
(record-case val
((<lambda> body)
(make-arity-info toplevel-calls
(vhash-consq lexical-name val
lexical-lambdas)
toplevel-lambdas))
((<lexical-ref> gensym)
;; lexical alias
(let ((val* (vhash-assq gensym lexical-lambdas)))
(if (pair? val*)
(extend lexical-name (cdr val*) info)
info)))
((<toplevel-ref> name)
;; top-level alias
(make-arity-info toplevel-calls
(vhash-consq lexical-name val
lexical-lambdas)
toplevel-lambdas))
(else info))))
(let ((toplevel-calls (toplevel-procedure-calls info))
(lexical-lambdas (lexical-lambdas info))
(toplevel-lambdas (toplevel-lambdas info)))
(record-case x
((<toplevel-define> name exp)
(record-case exp
((<lambda> body)
(make-arity-info toplevel-calls
lexical-lambdas
(vhash-consq name exp toplevel-lambdas)))
((<toplevel-ref> name)
;; alias for another toplevel
(let ((proc (vhash-assq name toplevel-lambdas)))
(make-arity-info toplevel-calls
lexical-lambdas
(vhash-consq (toplevel-define-name x)
(if (pair? proc)
(cdr proc)
exp)
toplevel-lambdas))))
(else info)))
((<let> gensyms vals)
(fold extend info gensyms vals))
((<letrec> gensyms vals)
(fold extend info gensyms vals))
((<fix> gensyms vals)
(fold extend info gensyms vals))
((<call> proc args src)
(record-case proc
((<lambda> body)
(validate-arity proc x #t)
info)
((<toplevel-ref> name)
(make-arity-info (vhash-consq name x toplevel-calls)
lexical-lambdas
toplevel-lambdas))
((<lexical-ref> gensym)
(let ((proc (vhash-assq gensym lexical-lambdas)))
(if (pair? proc)
(record-case (cdr proc)
((<toplevel-ref> name)
;; alias to toplevel
(make-arity-info (vhash-consq name x toplevel-calls)
lexical-lambdas
toplevel-lambdas))
(else
(validate-arity (cdr proc) x #t)
info))
;; If GENSYM wasn't found, it may be because it's an
;; argument of the procedure being compiled.
info)))
(else info)))
(else info))))
(lambda (x info env locs)
;; Up from X.
(define (shrink name val info)
;; Remove NAME from the lexical-lambdas of INFO.
(let ((toplevel-calls (toplevel-procedure-calls info))
(lexical-lambdas (lexical-lambdas info))
(toplevel-lambdas (toplevel-lambdas info)))
(make-arity-info toplevel-calls
(if (vhash-assq name lexical-lambdas)
(vlist-tail lexical-lambdas)
lexical-lambdas)
toplevel-lambdas)))
(let ((toplevel-calls (toplevel-procedure-calls info))
(lexical-lambdas (lexical-lambdas info))
(toplevel-lambdas (toplevel-lambdas info)))
(record-case x
((<let> gensyms vals)
(fold shrink info gensyms vals))
((<letrec> gensyms vals)
(fold shrink info gensyms vals))
((<fix> gensyms vals)
(fold shrink info gensyms vals))
(else info))))
(lambda (result env)
;; Post-processing: check all top-level procedure calls that have been
;; encountered.
(let ((toplevel-calls (toplevel-procedure-calls result))
(toplevel-lambdas (toplevel-lambdas result)))
(vlist-for-each
(lambda (name+call)
(let* ((name (car name+call))
(call (cdr name+call))
(proc
(or (and=> (vhash-assq name toplevel-lambdas) cdr)
(and (module? env)
(false-if-exception
(module-ref env name)))))
(proc*
;; handle toplevel aliases
(if (toplevel-ref? proc)
(let ((name (toplevel-ref-name proc)))
(and (module? env)
(false-if-exception
(module-ref env name))))
proc)))
(cond ((lambda? proc*)
(validate-arity proc* call #t))
((procedure? proc*)
(validate-arity proc* call #f)))))
toplevel-calls)))
(make-arity-info vlist-null vlist-null vlist-null)))
;;;
;;; `format' argument analysis.
;;;
(define &syntax-error
;; The `throw' key for syntax errors.
(gensym "format-string-syntax-error"))
(define (format-string-argument-count fmt)
;; Return the minimum and maxium number of arguments that should
;; follow format string FMT (or, ahem, a good estimate thereof) or
;; `any' if the format string can be followed by any number of
;; arguments.
(define (drop-group chars end)
;; Drop characters from CHARS until "~END" is encountered.
(let loop ((chars chars)
(tilde? #f))
(if (null? chars)
(throw &syntax-error 'unterminated-iteration)
(if tilde?
(if (eq? (car chars) end)
(cdr chars)
(loop (cdr chars) #f))
(if (eq? (car chars) #\~)
(loop (cdr chars) #t)
(loop (cdr chars) #f))))))
(define (digit? char)
;; Return true if CHAR is a digit, #f otherwise.
(memq char '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)))
(define (previous-number chars)
;; Return the previous series of digits found in CHARS.
(let ((numbers (take-while digit? chars)))
(and (not (null? numbers))
(string->number (list->string (reverse numbers))))))
(let loop ((chars (string->list fmt))
(state 'literal)
(params '())
(conditions '())
(end-group #f)
(min-count 0)
(max-count 0))
(if (null? chars)
(if end-group
(throw &syntax-error 'unterminated-conditional)
(values min-count max-count))
(case state
((tilde)
(case (car chars)
((#\~ #\% #\& #\t #\T #\_ #\newline #\( #\) #\! #\| #\/ #\q #\Q)
(loop (cdr chars) 'literal '()
conditions end-group
min-count max-count))
((#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\, #\: #\@ #\+ #\- #\#)
(loop (cdr chars)
'tilde (cons (car chars) params)
conditions end-group
min-count max-count))
((#\v #\V) (loop (cdr chars)
'tilde (cons (car chars) params)
conditions end-group
(+ 1 min-count)
(+ 1 max-count)))
((#\p #\P) (let* ((colon? (memq #\: params))
(min-count (if colon?
(max 1 min-count)
(+ 1 min-count))))
(loop (cdr chars) 'literal '()
conditions end-group
min-count
(if colon?
(max max-count min-count)
(+ 1 max-count)))))
((#\[)
(loop chars 'literal '() '()
(let ((selector (previous-number params))
(at? (memq #\@ params)))
(lambda (chars conds)
;; end of group
(let ((mins (map car conds))
(maxs (map cdr conds))
(sel? (and selector
(< selector (length conds)))))
(if (and (every number? mins)
(every number? maxs))
(loop chars 'literal '() conditions end-group
(+ min-count
(if sel?
(car (list-ref conds selector))
(+ (if at? 0 1)
(if (null? mins)
0
(apply min mins)))))
(+ max-count
(if sel?
(cdr (list-ref conds selector))
(+ (if at? 0 1)
(if (null? maxs)
0
(apply max maxs))))))
(values 'any 'any))))) ;; XXX: approximation
0 0))
((#\;)
(if end-group
(loop (cdr chars) 'literal '()
(cons (cons min-count max-count) conditions)
end-group
0 0)
(throw &syntax-error 'unexpected-semicolon)))
((#\])
(if end-group
(end-group (cdr chars)
(reverse (cons (cons min-count max-count)
conditions)))
(throw &syntax-error 'unexpected-conditional-termination)))
((#\{) (if (memq #\@ params)
(values min-count 'any)
(loop (drop-group (cdr chars) #\})
'literal '()
conditions end-group
(+ 1 min-count) (+ 1 max-count))))
((#\*) (if (memq #\@ params)
(values 'any 'any) ;; it's unclear what to do here
(loop (cdr chars)
'literal '()
conditions end-group
(+ (or (previous-number params) 1)
min-count)
(+ (or (previous-number params) 1)
max-count))))
((#\? #\k #\K)
;; We don't have enough info to determine the exact number
;; of args, but we could determine a lower bound (TODO).
(values 'any 'any))
((#\^)
(values min-count 'any))
((#\h #\H)
(let ((argc (if (memq #\: params) 2 1)))
(loop (cdr chars) 'literal '()
conditions end-group
(+ argc min-count)
(+ argc max-count))))
((#\')
(if (null? (cdr chars))
(throw &syntax-error 'unexpected-termination)
(loop (cddr chars) 'tilde (cons (cadr chars) params)
conditions end-group min-count max-count)))
(else (loop (cdr chars) 'literal '()
conditions end-group
(+ 1 min-count) (+ 1 max-count)))))
((literal)
(case (car chars)
((#\~) (loop (cdr chars) 'tilde '()
conditions end-group
min-count max-count))
(else (loop (cdr chars) 'literal '()
conditions end-group
min-count max-count))))
(else (error "computer bought the farm" state))))))
(define (proc-ref? exp proc special-name env)
"Return #t when EXP designates procedure PROC in ENV. As a last
resort, return #t when EXP refers to the global variable SPECIAL-NAME."
(define special?
(cut eq? <> special-name))
(match exp
(($ <toplevel-ref> _ (? special?))
;; Allow top-levels like: (define _ (cut gettext <> "my-domain")).
#t)
(($ <toplevel-ref> _ name)
(let ((var (module-variable env name)))
(and var (variable-bound? var)
(eq? (variable-ref var) proc))))
(($ <module-ref> _ _ (? special?))
#t)
(($ <module-ref> _ module name public?)
(let* ((mod (if public?
(false-if-exception (resolve-interface module))
(resolve-module module #:ensure #f)))
(var (and mod (module-variable mod name))))
(and var (variable-bound? var) (eq? (variable-ref var) proc))))
(($ <lexical-ref> _ (? special?))
#t)
(_ #f)))
(define gettext? (cut proc-ref? <> gettext '_ <>))
(define ngettext? (cut proc-ref? <> ngettext 'N_ <>))
(define (const-fmt x env)
;; Return the literal format string for X, or #f.
(match x
(($ <const> _ (? string? exp))
exp)
(($ <call> _ (? (cut gettext? <> env))
(($ <const> _ (? string? fmt))))
;; Gettexted literals, like `(_ "foo")'.
fmt)
(($ <call> _ (? (cut ngettext? <> env))
(($ <const> _ (? string? fmt)) ($ <const> _ (? string?)) _ ..1))
;; Plural gettextized literals, like `(N_ "singular" "plural" n)'.
;; TODO: Check whether the singular and plural strings have the
;; same format escapes.
fmt)
(_ #f)))
(define format-analysis
;; Report arity mismatches in the given tree.
(make-tree-analysis
(lambda (x _ env locs)
;; Down into X.
(define (check-format-args args loc)
(pmatch args
((,port ,fmt . ,rest)
(guard (const-fmt fmt env))
(if (and (const? port)
(not (boolean? (const-exp port))))
(warning 'format loc 'wrong-port (const-exp port)))
(let ((fmt (const-fmt fmt env))
(count (length rest)))
(catch &syntax-error
(lambda ()
(let-values (((min max)
(format-string-argument-count fmt)))
(and min max
(or (and (or (eq? min 'any) (>= count min))
(or (eq? max 'any) (<= count max)))
(warning 'format loc 'wrong-format-arg-count
fmt min max count)))))
(lambda (_ key)
(warning 'format loc 'syntax-error key fmt)))))
((,port ,fmt . ,rest)
(if (and (const? port)
(not (boolean? (const-exp port))))
(warning 'format loc 'wrong-port (const-exp port)))
(match fmt
(($ <const> loc* (? (negate string?) fmt))
(warning 'format (or loc* loc) 'wrong-format-string fmt))
;; Warn on non-literal format strings, unless they refer to
;; a lexical variable named "fmt".
(($ <lexical-ref> _ fmt)
#t)
((? (negate const?))
(warning 'format loc 'non-literal-format-string))))
(else
(warning 'format loc 'wrong-num-args (length args)))))
(define (check-simple-format-args args loc)
;; Check the arguments to the `simple-format' procedure, which is
;; less capable than that of (ice-9 format).
(define allowed-chars
'(#\A #\S #\a #\s #\~ #\%))
(define (format-chars fmt)
(let loop ((chars (string->list fmt))
(result '()))
(match chars
(()
(reverse result))
((#\~ opt rest ...)
(loop rest (cons opt result)))
((_ rest ...)
(loop rest result)))))
(match args
((port ($ <const> _ (? string? fmt)) _ ...)
(let ((opts (format-chars fmt)))
(or (every (cut memq <> allowed-chars) opts)
(begin
(warning 'format loc 'simple-format fmt
(find (negate (cut memq <> allowed-chars)) opts))
#f))))
((port (= (cut const-fmt <> env) (? string? fmt)) args ...)
(check-simple-format-args `(,port ,(make-const loc fmt) ,args) loc))
(_ #t)))
(define (resolve-toplevel name)
(and (module? env)
(false-if-exception (module-ref env name))))
(match x
(($ <call> src ($ <toplevel-ref> _ name) args)
(let ((proc (resolve-toplevel name)))
(if (or (and (eq? proc (@ (guile) simple-format))
(check-simple-format-args args
(or src (find pair? locs))))
(eq? proc (@ (ice-9 format) format)))
(check-format-args args (or src (find pair? locs))))))
(($ <call> src ($ <module-ref> _ '(ice-9 format) 'format) args)
(check-format-args args (or src (find pair? locs))))
(($ <call> src ($ <module-ref> _ '(guile)
(or 'format 'simple-format))
args)
(and (check-simple-format-args args
(or src (find pair? locs)))
(check-format-args args (or src (find pair? locs)))))
(_ #t))
#t)
(lambda (x _ env locs)
;; Up from X.
#t)
(lambda (_ env)
;; Post-processing.
#t)
#t))
|