1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013, 2014, 2015 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Helper facilities for working with CPS.
;;;
;;; Code:
(define-module (language cps utils)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-11)
#:use-module (language cps)
#:use-module (language cps intset)
#:use-module (language cps intmap)
#:export (;; Fresh names.
label-counter var-counter
fresh-label fresh-var
with-fresh-name-state compute-max-label-and-var
let-fresh
;; Various utilities.
fold1 fold2
trivial-intset
intmap-map
intmap-keys
invert-bijection invert-partition
intset->intmap
worklist-fold
fixpoint
;; Flow analysis.
compute-constant-values
compute-function-body
compute-reachable-functions
compute-successors
invert-graph
compute-predecessors
compute-reverse-post-order
compute-strongly-connected-components
compute-sorted-strongly-connected-components
compute-idoms
compute-dom-edges
solve-flow-equations
))
(define label-counter (make-parameter #f))
(define var-counter (make-parameter #f))
(define (fresh-label)
(let ((count (or (label-counter)
(error "fresh-label outside with-fresh-name-state"))))
(label-counter (1+ count))
count))
(define (fresh-var)
(let ((count (or (var-counter)
(error "fresh-var outside with-fresh-name-state"))))
(var-counter (1+ count))
count))
(define-syntax-rule (let-fresh (label ...) (var ...) body ...)
(let* ((label (fresh-label)) ...
(var (fresh-var)) ...)
body ...))
(define-syntax-rule (with-fresh-name-state fun body ...)
(call-with-values (lambda () (compute-max-label-and-var fun))
(lambda (max-label max-var)
(parameterize ((label-counter (1+ max-label))
(var-counter (1+ max-var)))
body ...))))
(define (compute-max-label-and-var conts)
(values (or (intmap-prev conts) -1)
(intmap-fold (lambda (k cont max-var)
(match cont
(($ $kargs names syms body)
(apply max max-var syms))
(($ $kfun src meta self)
(max max-var self))
(_ max-var)))
conts
-1)))
(define-inlinable (fold1 f l s0)
(let lp ((l l) (s0 s0))
(match l
(() s0)
((elt . l) (lp l (f elt s0))))))
(define-inlinable (fold2 f l s0 s1)
(let lp ((l l) (s0 s0) (s1 s1))
(match l
(() (values s0 s1))
((elt . l)
(call-with-values (lambda () (f elt s0 s1))
(lambda (s0 s1)
(lp l s0 s1)))))))
(define (trivial-intset set)
"Returns the sole member of @var{set}, if @var{set} has exactly one
member, or @code{#f} otherwise."
(let ((first (intset-next set)))
(and first
(not (intset-next set (1+ first)))
first)))
(define (intmap-map proc map)
(persistent-intmap
(intmap-fold (lambda (k v out) (intmap-replace! out k (proc k v)))
map
map)))
(define (intmap-keys map)
"Return an intset of the keys in @var{map}."
(persistent-intset
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
(define (invert-bijection map)
"Assuming the values of @var{map} are integers and are unique, compute
a map in which each value maps to its key. If the values are not
unique, an error will be signalled."
(intmap-fold (lambda (k v out) (intmap-add out v k)) map empty-intmap))
(define (invert-partition map)
"Assuming the values of @var{map} are disjoint intsets, compute a map
in which each member of each set maps to its key. If the values are not
disjoint, an error will be signalled."
(intmap-fold (lambda (k v* out)
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
map empty-intmap))
(define (intset->intmap f set)
(persistent-intmap
(intset-fold (lambda (label preds)
(intmap-add! preds label (f label)))
set empty-intmap)))
(define worklist-fold
(case-lambda
((f in out)
(let lp ((in in) (out out))
(if (eq? in empty-intset)
out
(call-with-values (lambda () (f in out)) lp))))
((f in out0 out1)
(let lp ((in in) (out0 out0) (out1 out1))
(if (eq? in empty-intset)
(values out0 out1)
(call-with-values (lambda () (f in out0 out1)) lp))))))
(define fixpoint
(case-lambda
((f x)
(let lp ((x x))
(let ((x* (f x)))
(if (eq? x x*) x* (lp x*)))))
((f x0 x1)
(let lp ((x0 x0) (x1 x1))
(call-with-values (lambda () (f x0 x1))
(lambda (x0* x1*)
(if (and (eq? x0 x0*) (eq? x1 x1*))
(values x0* x1*)
(lp x0* x1*))))))))
(define (compute-defining-expressions conts)
(define (meet-defining-expressions old new)
;; If there are multiple definitions, punt and
;; record #f.
#f)
(persistent-intmap
(intmap-fold (lambda (label cont defs)
(match cont
(($ $kargs _ _ ($ $continue k src exp))
(match (intmap-ref conts k)
(($ $kargs (_) (var))
(intmap-add! defs var exp meet-defining-expressions))
(_ defs)))
(_ defs)))
conts
empty-intmap)))
(define (compute-constant-values conts)
(persistent-intmap
(intmap-fold (lambda (var exp out)
(match exp
(($ $const val)
(intmap-add! out var val))
(_ out)))
(compute-defining-expressions conts)
empty-intmap)))
(define (compute-function-body conts kfun)
(persistent-intset
(let visit-cont ((label kfun) (labels empty-intset))
(cond
((intset-ref labels label) labels)
(else
(let ((labels (intset-add! labels label)))
(match (intmap-ref conts label)
(($ $kreceive arity k) (visit-cont k labels))
(($ $kfun src meta self ktail kclause)
(let ((labels (visit-cont ktail labels)))
(if kclause
(visit-cont kclause labels)
labels)))
(($ $ktail) labels)
(($ $kclause arity kbody kalt)
(if kalt
(visit-cont kalt (visit-cont kbody labels))
(visit-cont kbody labels)))
(($ $kargs names syms ($ $continue k src exp))
(visit-cont k (match exp
(($ $branch k)
(visit-cont k labels))
(($ $prompt escape? tag k)
(visit-cont k labels))
(_ labels)))))))))))
(define* (compute-reachable-functions conts #:optional (kfun 0))
"Compute a mapping LABEL->LABEL..., where each key is a reachable
$kfun and each associated value is the body of the function, as an
intset."
(define (intset-cons i set) (intset-add set i))
(define (visit-fun kfun body to-visit)
(intset-fold
(lambda (label to-visit)
(define (return kfun*) (fold intset-cons to-visit kfun*))
(define (return1 kfun) (intset-add to-visit kfun))
(define (return0) to-visit)
(match (intmap-ref conts label)
(($ $kargs _ _ ($ $continue _ _ exp))
(match exp
(($ $fun label) (return1 label))
(($ $rec _ _ (($ $fun labels) ...)) (return labels))
(($ $closure label nfree) (return1 label))
(($ $callk label) (return1 label))
(_ (return0))))
(_ (return0))))
body
to-visit))
(let lp ((to-visit (intset kfun)) (visited empty-intmap))
(let ((to-visit (intset-subtract to-visit (intmap-keys visited))))
(if (eq? to-visit empty-intset)
visited
(call-with-values
(lambda ()
(intset-fold
(lambda (kfun to-visit visited)
(let ((body (compute-function-body conts kfun)))
(values (visit-fun kfun body to-visit)
(intmap-add visited kfun body))))
to-visit
empty-intset
visited))
lp)))))
(define* (compute-successors conts #:optional (kfun (intmap-next conts)))
(define (visit label succs)
(let visit ((label kfun) (succs empty-intmap))
(define (propagate0)
(intmap-add! succs label empty-intset))
(define (propagate1 succ)
(visit succ (intmap-add! succs label (intset succ))))
(define (propagate2 succ0 succ1)
(let ((succs (intmap-add! succs label (intset succ0 succ1))))
(visit succ1 (visit succ0 succs))))
(if (intmap-ref succs label (lambda (_) #f))
succs
(match (intmap-ref conts label)
(($ $kargs names vars ($ $continue k src exp))
(match exp
(($ $branch kt) (propagate2 k kt))
(($ $prompt escape? tag handler) (propagate2 k handler))
(_ (propagate1 k))))
(($ $kreceive arity k)
(propagate1 k))
(($ $kfun src meta self tail clause)
(if clause
(propagate2 clause tail)
(propagate1 tail)))
(($ $kclause arity kbody kalt)
(if kalt
(propagate2 kbody kalt)
(propagate1 kbody)))
(($ $ktail) (propagate0))))))
(persistent-intmap (visit kfun empty-intmap)))
(define* (compute-predecessors conts kfun #:key
(labels (compute-function-body conts kfun)))
(define (meet cdr car)
(cons car cdr))
(define (add-preds label preds)
(define (add-pred k preds)
(intmap-add! preds k label meet))
(match (intmap-ref conts label)
(($ $kreceive arity k)
(add-pred k preds))
(($ $kfun src meta self ktail kclause)
(add-pred ktail (if kclause (add-pred kclause preds) preds)))
(($ $ktail)
preds)
(($ $kclause arity kbody kalt)
(add-pred kbody (if kalt (add-pred kalt preds) preds)))
(($ $kargs names syms ($ $continue k src exp))
(add-pred k
(match exp
(($ $branch k) (add-pred k preds))
(($ $prompt _ _ k) (add-pred k preds))
(_ preds))))))
(persistent-intmap
(intset-fold add-preds labels
(intset->intmap (lambda (label) '()) labels))))
(define (compute-reverse-post-order succs start)
"Compute a reverse post-order numbering for a depth-first walk over
nodes reachable from the start node."
(let visit ((label start) (order '()) (visited empty-intset))
(call-with-values
(lambda ()
(intset-fold (lambda (succ order visited)
(if (intset-ref visited succ)
(values order visited)
(visit succ order visited)))
(intmap-ref succs label)
order
(intset-add! visited label)))
(lambda (order visited)
;; After visiting successors, add label to the reverse post-order.
(values (cons label order) visited)))))
(define (invert-graph succs)
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
intset of successors, return a graph SUCC->PRED...."
(intmap-fold (lambda (pred succs preds)
(intset-fold
(lambda (succ preds)
(intmap-add preds succ pred intset-add))
succs
preds))
succs
(intmap-map (lambda (label _) empty-intset) succs)))
(define (compute-strongly-connected-components succs start)
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
partitioning the labels into strongly connected components (SCCs)."
(let ((preds (invert-graph succs)))
(define (visit-scc scc sccs-by-label)
(let visit ((label scc) (sccs-by-label sccs-by-label))
(if (intmap-ref sccs-by-label label (lambda (_) #f))
sccs-by-label
(intset-fold visit
(intmap-ref preds label)
(intmap-add sccs-by-label label scc)))))
(intmap-fold
(lambda (label scc sccs)
(let ((labels (intset-add empty-intset label)))
(intmap-add sccs scc labels intset-union)))
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
empty-intmap)))
(define (compute-sorted-strongly-connected-components edges)
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
connected components in sorted order."
(define nodes
(intmap-keys edges))
;; Add a "start" node that links to all nodes in the graph, and then
;; remove it from the result.
(define start
(if (eq? nodes empty-intset)
0
(1+ (intset-prev nodes))))
(define components
(intmap-remove
(compute-strongly-connected-components (intmap-add edges start nodes)
start)
start))
(define node-components
(intmap-fold (lambda (id nodes out)
(intset-fold (lambda (node out) (intmap-add out node id))
nodes out))
components
empty-intmap))
(define (node-component node)
(intmap-ref node-components node))
(define (component-successors id nodes)
(intset-remove
(intset-fold (lambda (node out)
(intset-fold
(lambda (successor out)
(intset-add out (node-component successor)))
(intmap-ref edges node)
out))
nodes
empty-intset)
id))
(define component-edges
(intmap-map component-successors components))
(define preds
(invert-graph component-edges))
(define roots
(intmap-fold (lambda (id succs out)
(if (eq? empty-intset succs)
(intset-add out id)
out))
component-edges
empty-intset))
;; As above, add a "start" node that links to the roots, and remove it
;; from the result.
(match (compute-reverse-post-order (intmap-add preds start roots) start)
(((? (lambda (id) (eqv? id start))) . ids)
(map (lambda (id) (intmap-ref components id)) ids))))
;; Precondition: For each function in CONTS, the continuation names are
;; topologically sorted.
(define (compute-idoms conts kfun)
;; This is the iterative O(n^2) fixpoint algorithm, originally from
;; Allen and Cocke ("Graph-theoretic constructs for program flow
;; analysis", 1972). See the discussion in Cooper, Harvey, and
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
(let ((preds-map (compute-predecessors conts kfun)))
(define (compute-idom idoms preds)
(define (idom-ref label)
(intmap-ref idoms label (lambda (_) #f)))
(match preds
(() -1)
((pred) pred) ; Shortcut.
((pred . preds)
(define (common-idom d0 d1)
;; We exploit the fact that a reverse post-order is a
;; topological sort, and so the idom of a node is always
;; numerically less than the node itself.
(let lp ((d0 d0) (d1 d1))
(cond
;; d0 or d1 can be false on the first iteration.
((not d0) d1)
((not d1) d0)
((= d0 d1) d0)
((< d0 d1) (lp d0 (idom-ref d1)))
(else (lp (idom-ref d0) d1)))))
(fold1 common-idom preds pred))))
(define (adjoin-idom label preds idoms)
(let ((idom (compute-idom idoms preds)))
;; Don't use intmap-add! here.
(intmap-add idoms label idom (lambda (old new) new))))
(fixpoint (lambda (idoms)
(intmap-fold adjoin-idom preds-map idoms))
empty-intmap)))
;; Compute a vector containing, for each node, a list of the nodes that
;; it immediately dominates. These are the "D" edges in the DJ tree.
(define (compute-dom-edges idoms)
(define (snoc cdr car) (cons car cdr))
(persistent-intmap
(intmap-fold (lambda (label idom doms)
(let ((doms (intmap-add! doms label '())))
(cond
((< idom 0) doms) ;; No edge to entry.
(else (intmap-add! doms idom label snoc)))))
idoms
empty-intmap)))
(define (intset-pop set)
(match (intset-next set)
(#f (values set #f))
(i (values (intset-remove set i) i))))
(define (solve-flow-equations succs init kill gen subtract add meet)
"Find a fixed point for flow equations for SUCCS, where INIT is the
initial state at each node in SUCCS. KILL and GEN are intmaps
indicating the state that is killed or defined at every node, and
SUBTRACT, ADD, and MEET operates on that state."
(define (visit label in out)
(let* ((in-1 (intmap-ref in label))
(kill-1 (intmap-ref kill label))
(gen-1 (intmap-ref gen label))
(out-1 (intmap-ref out label))
(out-1* (add (subtract in-1 kill-1) gen-1)))
(if (eq? out-1 out-1*)
(values empty-intset in out)
(let ((out (intmap-replace! out label out-1*)))
(call-with-values
(lambda ()
(intset-fold (lambda (succ in changed)
(let* ((in-1 (intmap-ref in succ))
(in-1* (meet in-1 out-1*)))
(if (eq? in-1 in-1*)
(values in changed)
(values (intmap-replace! in succ in-1*)
(intset-add changed succ)))))
(intmap-ref succs label) in empty-intset))
(lambda (in changed)
(values changed in out)))))))
(let ((init (intmap-map (lambda (k v) init) succs)))
(let run ((worklist (intmap-keys succs)) (in init) (out init))
(call-with-values (lambda () (intset-pop worklist))
(lambda (worklist popped)
(if popped
(call-with-values (lambda () (visit popped in out))
(lambda (changed in out)
(run (intset-union worklist changed) in out)))
(values (persistent-intmap in)
(persistent-intmap out))))))))
|