summaryrefslogtreecommitdiff
path: root/module/ice-9/psyntax.scm
blob: a51e99d9cf1b138781b37c5942cd775817ff2ae6 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
;;;; -*-scheme-*-
;;;;
;;;; Copyright (C) 2001, 2003, 2006, 2009, 2010, 2011,
;;;;   2012, 2013, 2015, 2016, 2019 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;; 
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;;; Lesser General Public License for more details.
;;;; 
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;; 


;;; Portable implementation of syntax-case
;;; Originally extracted from Chez Scheme Version 5.9f
;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman

;;; Copyright (c) 1992-1997 Cadence Research Systems
;;; Permission to copy this software, in whole or in part, to use this
;;; software for any lawful purpose, and to redistribute this software
;;; is granted subject to the restriction that all copies made of this
;;; software must include this copyright notice in full.  This software
;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
;;; OR FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE
;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
;;; NATURE WHATSOEVER.

;;; Modified by Mikael Djurfeldt <djurfeldt@nada.kth.se> according
;;; to the ChangeLog distributed in the same directory as this file:
;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
;;; 2000-09-12, 2001-03-08

;;; Modified by Andy Wingo <wingo@pobox.com> according to the Git
;;; revision control logs corresponding to this file: 2009, 2010.

;;; Modified by Mark H Weaver <mhw@netris.org> according to the Git
;;; revision control logs corresponding to this file: 2012, 2013.


;;; This code is based on "Syntax Abstraction in Scheme"
;;; by R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
;;; Lisp and Symbolic Computation 5:4, 295-326, 1992.
;;; <http://www.cs.indiana.edu/~dyb/pubs/LaSC-5-4-pp295-326.pdf>


;;; This file defines the syntax-case expander, macroexpand, and a set
;;; of associated syntactic forms and procedures.  Of these, the
;;; following are documented in The Scheme Programming Language,
;;; Fourth Edition (R. Kent Dybvig, MIT Press, 2009), and in the 
;;; R6RS:
;;;
;;;   bound-identifier=?
;;;   datum->syntax
;;;   define-syntax
;;;   syntax-parameterize
;;;   free-identifier=?
;;;   generate-temporaries
;;;   identifier?
;;;   identifier-syntax
;;;   let-syntax
;;;   letrec-syntax
;;;   syntax
;;;   syntax-case
;;;   syntax->datum
;;;   syntax-rules
;;;   with-syntax
;;;
;;; Additionally, the expander provides definitions for a number of core
;;; Scheme syntactic bindings, such as `let', `lambda', and the like.

;;; The remaining exports are listed below:
;;;
;;;   (macroexpand datum)
;;;      if datum represents a valid expression, macroexpand returns an
;;;      expanded version of datum in a core language that includes no
;;;      syntactic abstractions.  The core language includes begin,
;;;      define, if, lambda, letrec, quote, and set!.
;;;   (eval-when situations expr ...)
;;;      conditionally evaluates expr ... at compile-time or run-time
;;;      depending upon situations (see the Chez Scheme System Manual,
;;;      Revision 3, for a complete description)
;;;   (syntax-violation who message form [subform])
;;;      used to report errors found during expansion
;;;   ($sc-dispatch e p)
;;;      used by expanded code to handle syntax-case matching

;;; This file is shipped along with an expanded version of itself,
;;; psyntax-pp.scm, which is loaded when psyntax.scm has not yet been
;;; compiled.  In this way, psyntax bootstraps off of an expanded
;;; version of itself.

;;; This implementation of the expander sometimes uses syntactic
;;; abstractions when procedural abstractions would suffice.  For
;;; example, we define top-wrap and top-marked? as
;;;
;;;   (define-syntax top-wrap (identifier-syntax '((top))))
;;;   (define-syntax top-marked?
;;;     (syntax-rules ()
;;;       ((_ w) (memq 'top (wrap-marks w)))))
;;;
;;; rather than
;;;
;;;   (define top-wrap '((top)))
;;;   (define top-marked?
;;;     (lambda (w) (memq 'top (wrap-marks w))))
;;;
;;; On the other hand, we don't do this consistently; we define
;;; make-wrap, wrap-marks, and wrap-subst simply as
;;;
;;;   (define make-wrap cons)
;;;   (define wrap-marks car)
;;;   (define wrap-subst cdr)
;;;
;;; In Chez Scheme, the syntactic and procedural forms of these
;;; abstractions are equivalent, since the optimizer consistently
;;; integrates constants and small procedures.  This will be true of
;;; Guile as well, once we implement a proper inliner.


;;; Implementation notes:

;;; Objects with no standard print syntax, including objects containing
;;; cycles and syntax object, are allowed in quoted data as long as they
;;; are contained within a syntax form or produced by datum->syntax.
;;; Such objects are never copied.

;;; All identifiers that don't have macro definitions and are not bound
;;; lexically are assumed to be global variables.

;;; Top-level definitions of macro-introduced identifiers are allowed.
;;; This may not be appropriate for implementations in which the
;;; model is that bindings are created by definitions, as opposed to
;;; one in which initial values are assigned by definitions.

;;; Identifiers and syntax objects are implemented as vectors for
;;; portability.  As a result, it is possible to "forge" syntax objects.

;;; The implementation of generate-temporaries assumes that it is
;;; possible to generate globally unique symbols (gensyms).

;;; The source location associated with incoming expressions is tracked
;;; via the source-properties mechanism, a weak map from expression to
;;; source information. At times the source is separated from the
;;; expression; see the note below about "efficiency and confusion".


;;; Bootstrapping:

;;; When changing syntax-object representations, it is necessary to support
;;; both old and new syntax-object representations in id-var-name.  It
;;; should be sufficient to recognize old representations and treat
;;; them as not lexically bound.



(eval-when (compile)
  (set-current-module (resolve-module '(guile))))

(let ((syntax? (module-ref (current-module) 'syntax?))
      (make-syntax (module-ref (current-module) 'make-syntax))
      (syntax-expression (module-ref (current-module) 'syntax-expression))
      (syntax-wrap (module-ref (current-module) 'syntax-wrap))
      (syntax-module (module-ref (current-module) 'syntax-module)))

  (define-syntax define-expansion-constructors
    (lambda (x)
      (syntax-case x ()
        ((_)
         (let lp ((n 0) (out '()))
           (if (< n (vector-length %expanded-vtables))
               (lp (1+ n)
                   (let* ((vtable (vector-ref %expanded-vtables n))
                          (stem (struct-ref vtable (+ vtable-offset-user 0)))
                          (fields (struct-ref vtable (+ vtable-offset-user 2)))
                          (sfields (map (lambda (f) (datum->syntax x f)) fields))
                          (ctor (datum->syntax x (symbol-append 'make- stem))))
                     (cons #`(define (#,ctor #,@sfields)
                               (make-struct/no-tail
                                (vector-ref %expanded-vtables #,n)
                                #,@sfields))
                           out)))
               #`(begin #,@(reverse out))))))))

  (define-syntax define-expansion-accessors
    (lambda (x)
      (syntax-case x ()
        ((_ stem field ...)
         (let lp ((n 0))
           (let ((vtable (vector-ref %expanded-vtables n))
                 (stem (syntax->datum #'stem)))
             (if (eq? (struct-ref vtable (+ vtable-offset-user 0)) stem)
                 #`(begin
                     (define (#,(datum->syntax x (symbol-append stem '?)) x)
                       (and (struct? x)
                            (eq? (struct-vtable x)
                                 (vector-ref %expanded-vtables #,n))))
                     #,@(map
                         (lambda (f)
                           (let ((get (datum->syntax x (symbol-append stem '- f)))
                                 (set (datum->syntax x (symbol-append 'set- stem '- f '!)))
                                 (idx (list-index (struct-ref vtable
                                                              (+ vtable-offset-user 2))
                                                  f)))
                             #`(begin
                                 (define (#,get x)
                                   (struct-ref x #,idx))
                                 (define (#,set x v)
                                   (struct-set! x #,idx v)))))
                         (syntax->datum #'(field ...))))
                 (lp (1+ n)))))))))

  (define-syntax define-structure
    (lambda (x)
      (define construct-name
        (lambda (template-identifier . args)
          (datum->syntax
           template-identifier
           (string->symbol
            (apply string-append
                   (map (lambda (x)
                          (if (string? x)
                              x
                              (symbol->string (syntax->datum x))))
                        args))))))
      (syntax-case x ()
        ((_ (name id1 ...))
         (and-map identifier? #'(name id1 ...))
         (with-syntax
             ((constructor (construct-name #'name "make-" #'name))
              (predicate (construct-name #'name #'name "?"))
              ((access ...)
               (map (lambda (x) (construct-name x #'name "-" x))
                    #'(id1 ...)))
              ((assign ...)
               (map (lambda (x)
                      (construct-name x "set-" #'name "-" x "!"))
                    #'(id1 ...)))
              (structure-length
               (+ (length #'(id1 ...)) 1))
              ((index ...)
               (let f ((i 1) (ids #'(id1 ...)))
                 (if (null? ids)
                     '()
                     (cons i (f (+ i 1) (cdr ids)))))))
           #'(begin
               (define constructor
                 (lambda (id1 ...)
                   (vector 'name id1 ... )))
               (define predicate
                 (lambda (x)
                   (and (vector? x)
                        (= (vector-length x) structure-length)
                        (eq? (vector-ref x 0) 'name))))
               (define access
                 (lambda (x)
                   (vector-ref x index)))
               ...
               (define assign
                 (lambda (x update)
                   (vector-set! x index update)))
               ...))))))

  (let ()
    (define-expansion-constructors)
    (define-expansion-accessors lambda meta)

    ;; hooks to nonportable run-time helpers
    (begin
      (define-syntax fx+ (identifier-syntax +))
      (define-syntax fx- (identifier-syntax -))
      (define-syntax fx= (identifier-syntax =))
      (define-syntax fx< (identifier-syntax <))

      (define top-level-eval-hook
        (lambda (x mod)
          (primitive-eval x)))

      (define local-eval-hook
        (lambda (x mod)
          (primitive-eval x)))
    
      ;; Capture syntax-session-id before we shove it off into a module.
      (define session-id
        (let ((v (module-variable (current-module) 'syntax-session-id)))
          (lambda ()
            ((variable-ref v))))))

    (define (decorate-source e s)
      (if (and s (supports-source-properties? e))
          (set-source-properties! e s))
      e)

    (define (maybe-name-value! name val)
      (if (lambda? val)
          (let ((meta (lambda-meta val)))
            (if (not (assq 'name meta))
                (set-lambda-meta! val (acons 'name name meta))))))

    ;; output constructors
    (define build-void
      (lambda (source)
        (make-void source)))

    (define build-call
      (lambda (source fun-exp arg-exps)
        (make-call source fun-exp arg-exps)))
  
    (define build-conditional
      (lambda (source test-exp then-exp else-exp)
        (make-conditional source test-exp then-exp else-exp)))
  
    (define build-lexical-reference
      (lambda (type source name var)
        (make-lexical-ref source name var)))
  
    (define build-lexical-assignment
      (lambda (source name var exp)
        (maybe-name-value! name exp)
        (make-lexical-set source name var exp)))
  
    (define (analyze-variable mod var modref-cont bare-cont)
      (if (not mod)
          (bare-cont var)
          (let ((kind (car mod))
                (mod (cdr mod)))
            (case kind
              ((public) (modref-cont mod var #t))
              ((private) (if (not (equal? mod (module-name (current-module))))
                             (modref-cont mod var #f)
                             (bare-cont var)))
              ((bare) (bare-cont var))
              ((hygiene) (if (and (not (equal? mod (module-name (current-module))))
                                  (module-variable (resolve-module mod) var))
                             (modref-cont mod var #f)
                             (bare-cont var)))
              ((primitive)
               (syntax-violation #f "primitive not in operator position" var))
              (else (syntax-violation #f "bad module kind" var mod))))))

    (define build-global-reference
      (lambda (source var mod)
        (analyze-variable
         mod var
         (lambda (mod var public?) 
           (make-module-ref source mod var public?))
         (lambda (var)
           (make-toplevel-ref source var)))))

    (define build-global-assignment
      (lambda (source var exp mod)
        (maybe-name-value! var exp)
        (analyze-variable
         mod var
         (lambda (mod var public?) 
           (make-module-set source mod var public? exp))
         (lambda (var)
           (make-toplevel-set source var exp)))))

    (define build-global-definition
      (lambda (source var exp)
        (maybe-name-value! var exp)
        (make-toplevel-define source var exp)))

    (define build-simple-lambda
      (lambda (src req rest vars meta exp)
        (make-lambda src
                     meta
                     ;; hah, a case in which kwargs would be nice.
                     (make-lambda-case
                      ;; src req opt rest kw inits vars body else
                      src req #f rest #f '() vars exp #f))))

    (define build-case-lambda
      (lambda (src meta body)
        (make-lambda src meta body)))

    (define build-lambda-case
      ;; req := (name ...)
      ;; opt := (name ...) | #f
      ;; rest := name | #f
      ;; kw := (allow-other-keys? (keyword name var) ...) | #f
      ;; inits: (init ...)
      ;; vars: (sym ...)
      ;; vars map to named arguments in the following order:
      ;;  required, optional (positional), rest, keyword.
      ;; the body of a lambda: anything, already expanded
      ;; else: lambda-case | #f
      (lambda (src req opt rest kw inits vars body else-case)
        (make-lambda-case src req opt rest kw inits vars body else-case)))

    (define build-primcall
      (lambda (src name args)
        (make-primcall src name args)))
    
    (define build-primref
      (lambda (src name)
        (make-primitive-ref src name)))
    
    (define (build-data src exp)
      (make-const src exp))

    (define build-sequence
      (lambda (src exps)
        (if (null? (cdr exps))
            (car exps)
            (make-seq src (car exps) (build-sequence #f (cdr exps))))))

    (define build-let
      (lambda (src ids vars val-exps body-exp)
        (for-each maybe-name-value! ids val-exps)
        (if (null? vars)
            body-exp
            (make-let src ids vars val-exps body-exp))))

    (define build-named-let
      (lambda (src ids vars val-exps body-exp)
        (let ((f (car vars))
              (f-name (car ids))
              (vars (cdr vars))
              (ids (cdr ids)))
          (let ((proc (build-simple-lambda src ids #f vars '() body-exp)))
            (maybe-name-value! f-name proc)
            (for-each maybe-name-value! ids val-exps)
            (make-letrec
             src #f
             (list f-name) (list f) (list proc)
             (build-call src (build-lexical-reference 'fun src f-name f)
                         val-exps))))))

    (define build-letrec
      (lambda (src in-order? ids vars val-exps body-exp)
        (if (null? vars)
            body-exp
            (begin
              (for-each maybe-name-value! ids val-exps)
              (make-letrec src in-order? ids vars val-exps body-exp)))))


    (define-syntax-rule (build-lexical-var src id)
      ;; Use a per-module counter instead of the global counter of
      ;; 'gensym' so that the generated identifier is reproducible.
      (module-gensym (symbol->string id)))

    (define (syntax-object? x)
      (or (syntax? x)
          (and (allow-legacy-syntax-objects?)
               (vector? x)
               (= (vector-length x) 4)
               (eqv? (vector-ref x 0) 'syntax-object))))
    (define (make-syntax-object expression wrap module)
      (make-syntax expression wrap module))
    (define (syntax-object-expression obj)
      (if (syntax? obj)
          (syntax-expression obj)
          (vector-ref obj 1)))
    (define (syntax-object-wrap obj)
      (if (syntax? obj)
          (syntax-wrap obj)
          (vector-ref obj 2)))
    (define (syntax-object-module obj)
      (if (syntax? obj)
          (syntax-module obj)
          (vector-ref obj 3)))

    (define-syntax no-source (identifier-syntax #f))

    (define source-annotation
      (lambda (x)
        (let ((props (source-properties
                      (if (syntax-object? x)
                          (syntax-object-expression x)
                          x))))
          (and (pair? props) props))))

    (define-syntax-rule (arg-check pred? e who)
      (let ((x e))
        (if (not (pred? x)) (syntax-violation who "invalid argument" x))))

    ;; compile-time environments

    ;; wrap and environment comprise two level mapping.
    ;;   wrap : id --> label
    ;;   env : label --> <element>

    ;; environments are represented in two parts: a lexical part and a
    ;; global part.  The lexical part is a simple list of associations
    ;; from labels to bindings.  The global part is implemented by
    ;; Guile's module system and associates symbols with bindings.

    ;; global (assumed global variable) and displaced-lexical (see below)
    ;; do not show up in any environment; instead, they are fabricated by
    ;; resolve-identifier when it finds no other bindings.

    ;; <environment>              ::= ((<label> . <binding>)*)

    ;; identifier bindings include a type and a value

    ;; <binding> ::= (macro . <procedure>)           macros
    ;;               (syntax-parameter . <procedure>) syntax parameters
    ;;               (core . <procedure>)            core forms
    ;;               (module-ref . <procedure>)      @ or @@
    ;;               (begin)                         begin
    ;;               (define)                        define
    ;;               (define-syntax)                 define-syntax
    ;;               (define-syntax-parameter)       define-syntax-parameter
    ;;               (local-syntax . rec?)           let-syntax/letrec-syntax
    ;;               (eval-when)                     eval-when
    ;;               (syntax . (<var> . <level>))    pattern variables
    ;;               (global)                        assumed global variable
    ;;               (lexical . <var>)               lexical variables
    ;;               (ellipsis . <identifier>)       custom ellipsis
    ;;               (displaced-lexical)             displaced lexicals
    ;; <level>   ::= <nonnegative integer>
    ;; <var>     ::= variable returned by build-lexical-var

    ;; a macro is a user-defined syntactic-form.  a core is a
    ;; system-defined syntactic form.  begin, define, define-syntax,
    ;; define-syntax-parameter, and eval-when are treated specially
    ;; since they are sensitive to whether the form is at top-level and
    ;; (except for eval-when) can denote valid internal definitions.

    ;; a pattern variable is a variable introduced by syntax-case and can
    ;; be referenced only within a syntax form.

    ;; any identifier for which no top-level syntax definition or local
    ;; binding of any kind has been seen is assumed to be a global
    ;; variable.

    ;; a lexical variable is a lambda- or letrec-bound variable.

    ;; an ellipsis binding is introduced by the 'with-ellipsis' special
    ;; form.

    ;; a displaced-lexical identifier is a lexical identifier removed from
    ;; it's scope by the return of a syntax object containing the identifier.
    ;; a displaced lexical can also appear when a letrec-syntax-bound
    ;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
    ;; a displaced lexical should never occur with properly written macros.

    (define-syntax make-binding
      (syntax-rules (quote)
        ((_ type value) (cons type value))
        ((_ 'type) '(type))
        ((_ type) (cons type '()))))
    (define-syntax-rule (binding-type x)
      (car x))
    (define-syntax-rule (binding-value x)
      (cdr x))

    (define-syntax null-env (identifier-syntax '()))

    (define extend-env
      (lambda (labels bindings r) 
        (if (null? labels)
            r
            (extend-env (cdr labels) (cdr bindings)
                        (cons (cons (car labels) (car bindings)) r)))))

    (define extend-var-env
      ;; variant of extend-env that forms "lexical" binding
      (lambda (labels vars r)
        (if (null? labels)
            r
            (extend-var-env (cdr labels) (cdr vars)
                            (cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))

    ;; we use a "macros only" environment in expansion of local macro
    ;; definitions so that their definitions can use local macros without
    ;; attempting to use other lexical identifiers.
    (define macros-only-env
      (lambda (r)
        (if (null? r)
            '()
            (let ((a (car r)))
              (if (memq (cadr a) '(macro syntax-parameter ellipsis))
                  (cons a (macros-only-env (cdr r)))
                  (macros-only-env (cdr r)))))))

    (define global-extend
      (lambda (type sym val)
        (module-define! (current-module)
                        sym
                        (make-syntax-transformer sym type val))))


    ;; Conceptually, identifiers are always syntax objects.  Internally,
    ;; however, the wrap is sometimes maintained separately (a source of
    ;; efficiency and confusion), so that symbols are also considered
    ;; identifiers by id?.  Externally, they are always wrapped.

    (define nonsymbol-id?
      (lambda (x)
        (and (syntax-object? x)
             (symbol? (syntax-object-expression x)))))

    (define id?
      (lambda (x)
        (cond
         ((symbol? x) #t)
         ((syntax-object? x) (symbol? (syntax-object-expression x)))
         (else #f))))

    (define-syntax-rule (id-sym-name e)
      (let ((x e))
        (if (syntax-object? x)
            (syntax-object-expression x)
            x)))

    (define id-sym-name&marks
      (lambda (x w)
        (if (syntax-object? x)
            (values
             (syntax-object-expression x)
             (join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
            (values x (wrap-marks w)))))

    ;; syntax object wraps

    ;;      <wrap> ::= ((<mark> ...) . (<subst> ...))
    ;;     <subst> ::= shift | <subs>
    ;;      <subs> ::= #(ribcage #(<sym> ...) #(<mark> ...) #(<label> ...))
    ;;                 | #(ribcage (<sym> ...) (<mark> ...) (<label> ...))

    (define-syntax make-wrap (identifier-syntax cons))
    (define-syntax wrap-marks (identifier-syntax car))
    (define-syntax wrap-subst (identifier-syntax cdr))

    ;; labels must be comparable with "eq?", have read-write invariance,
    ;; and distinct from symbols.
    (define (gen-label)
      (symbol->string (module-gensym "l")))

    (define gen-labels
      (lambda (ls)
        (if (null? ls)
            '()
            (cons (gen-label) (gen-labels (cdr ls))))))

    (define-structure (ribcage symnames marks labels))

    (define-syntax empty-wrap (identifier-syntax '(())))

    (define-syntax top-wrap (identifier-syntax '((top))))

    (define-syntax-rule (top-marked? w)
      (memq 'top (wrap-marks w)))

    ;; Marks must be comparable with "eq?" and distinct from pairs and
    ;; the symbol top.  We do not use integers so that marks will remain
    ;; unique even across file compiles.

    (define-syntax the-anti-mark (identifier-syntax #f))

    (define anti-mark
      (lambda (w)
        (make-wrap (cons the-anti-mark (wrap-marks w))
                   (cons 'shift (wrap-subst w)))))

    (define-syntax-rule (new-mark)
      (module-gensym "m"))

    ;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
    ;; internal definitions, in which the ribcages are built incrementally
    (define-syntax-rule (make-empty-ribcage)
      (make-ribcage '() '() '()))

    (define extend-ribcage!
      ;; must receive ids with complete wraps
      (lambda (ribcage id label)
        (set-ribcage-symnames! ribcage
                               (cons (syntax-object-expression id)
                                     (ribcage-symnames ribcage)))
        (set-ribcage-marks! ribcage
                            (cons (wrap-marks (syntax-object-wrap id))
                                  (ribcage-marks ribcage)))
        (set-ribcage-labels! ribcage
                             (cons label (ribcage-labels ribcage)))))

    ;; make-binding-wrap creates vector-based ribcages
    (define make-binding-wrap
      (lambda (ids labels w)
        (if (null? ids)
            w
            (make-wrap
             (wrap-marks w)
             (cons
              (let ((labelvec (list->vector labels)))
                (let ((n (vector-length labelvec)))
                  (let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
                    (let f ((ids ids) (i 0))
                      (if (not (null? ids))
                          (call-with-values
                              (lambda () (id-sym-name&marks (car ids) w))
                            (lambda (symname marks)
                              (vector-set! symnamevec i symname)
                              (vector-set! marksvec i marks)
                              (f (cdr ids) (fx+ i 1))))))
                    (make-ribcage symnamevec marksvec labelvec))))
              (wrap-subst w))))))

    (define smart-append
      (lambda (m1 m2)
        (if (null? m2)
            m1
            (append m1 m2))))

    (define join-wraps
      (lambda (w1 w2)
        (let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
          (if (null? m1)
              (if (null? s1)
                  w2
                  (make-wrap
                   (wrap-marks w2)
                   (smart-append s1 (wrap-subst w2))))
              (make-wrap
               (smart-append m1 (wrap-marks w2))
               (smart-append s1 (wrap-subst w2)))))))

    (define join-marks
      (lambda (m1 m2)
        (smart-append m1 m2)))

    (define same-marks?
      (lambda (x y)
        (or (eq? x y)
            (and (not (null? x))
                 (not (null? y))
                 (eq? (car x) (car y))
                 (same-marks? (cdr x) (cdr y))))))

    (define id-var-name
      ;; Syntax objects use wraps to associate names with marked
      ;; identifiers.  This function returns the name corresponding to
      ;; the given identifier and wrap, or the original identifier if no
      ;; corresponding name was found.
      ;;
      ;; The name may be a string created by gen-label, indicating a
      ;; lexical binding, or another syntax object, indicating a
      ;; reference to a top-level definition created during a previous
      ;; macroexpansion.
      ;;
      ;; For lexical variables, finding a label simply amounts to
      ;; looking for an entry with the same symbolic name and the same
      ;; marks.  Finding a toplevel definition is the same, except we
      ;; also have to compare modules, hence the `mod' parameter.
      ;; Instead of adding a separate entry in the ribcage for modules,
      ;; which wouldn't be used for lexicals, we arrange for the entry
      ;; for the name entry to be a pair with the module in its car, and
      ;; the name itself in the cdr.  So if the name that we find is a
      ;; pair, we have to check modules.
      ;;
      ;; The identifer may be passed in wrapped or unwrapped.  In any
      ;; case, this routine returns either a symbol, a syntax object, or
      ;; a string label.
      ;;
      (lambda (id w mod)
        (define-syntax-rule (first e)
          ;; Rely on Guile's multiple-values truncation.
          e)
        (define search
          (lambda (sym subst marks mod)
            (if (null? subst)
                (values #f marks)
                (let ((fst (car subst)))
                  (if (eq? fst 'shift)
                      (search sym (cdr subst) (cdr marks) mod)
                      (let ((symnames (ribcage-symnames fst)))
                        (if (vector? symnames)
                            (search-vector-rib sym subst marks symnames fst mod)
                            (search-list-rib sym subst marks symnames fst mod))))))))
        (define search-list-rib
          (lambda (sym subst marks symnames ribcage mod)
            (let f ((symnames symnames) (i 0))
              (cond
               ((null? symnames) (search sym (cdr subst) marks mod))
               ((and (eq? (car symnames) sym)
                     (same-marks? marks (list-ref (ribcage-marks ribcage) i)))
                (let ((n (list-ref (ribcage-labels ribcage) i)))
                  (if (pair? n)
                      (if (equal? mod (car n))
                          (values (cdr n) marks)
                          (f (cdr symnames) (fx+ i 1)))
                      (values n marks))))
               (else (f (cdr symnames) (fx+ i 1)))))))
        (define search-vector-rib
          (lambda (sym subst marks symnames ribcage mod)
            (let ((n (vector-length symnames)))
              (let f ((i 0))
                (cond
                 ((fx= i n) (search sym (cdr subst) marks mod))
                 ((and (eq? (vector-ref symnames i) sym)
                       (same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
                  (let ((n (vector-ref (ribcage-labels ribcage) i)))
                    (if (pair? n)
                        (if (equal? mod (car n))
                            (values (cdr n) marks)
                            (f (fx+ i 1)))
                        (values n marks))))
                 (else (f (fx+ i 1))))))))
        (cond
         ((symbol? id)
          (or (first (search id (wrap-subst w) (wrap-marks w) mod)) id))
         ((syntax-object? id)
          (let ((id (syntax-object-expression id))
                (w1 (syntax-object-wrap id))
                (mod (syntax-object-module id)))
            (let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
              (call-with-values (lambda () (search id (wrap-subst w) marks mod))
                (lambda (new-id marks)
                  (or new-id
                      (first (search id (wrap-subst w1) marks mod))
                      id))))))
         (else (syntax-violation 'id-var-name "invalid id" id)))))

    ;; A helper procedure for syntax-locally-bound-identifiers, which
    ;; itself is a helper for transformer procedures.
    ;; `locally-bound-identifiers' returns a list of all bindings
    ;; visible to a syntax object with the given wrap.  They are in
    ;; order from outer to inner.
    ;;
    ;; The purpose of this procedure is to give a transformer procedure
    ;; references on bound identifiers, that the transformer can then
    ;; introduce some of them in its output.  As such, the identifiers
    ;; are anti-marked, so that rebuild-macro-output doesn't apply new
    ;; marks to them.
    ;;
    (define locally-bound-identifiers
      (lambda (w mod)
        (define scan
          (lambda (subst results)
            (if (null? subst)
                results
                (let ((fst (car subst)))
                  (if (eq? fst 'shift)
                      (scan (cdr subst) results)
                      (let ((symnames (ribcage-symnames fst))
                            (marks (ribcage-marks fst)))
                        (if (vector? symnames)
                            (scan-vector-rib subst symnames marks results)
                            (scan-list-rib subst symnames marks results))))))))
        (define scan-list-rib
          (lambda (subst symnames marks results)
            (let f ((symnames symnames) (marks marks) (results results))
              (if (null? symnames)
                  (scan (cdr subst) results)
                  (f (cdr symnames) (cdr marks)
                     (cons (wrap (car symnames)
                                 (anti-mark (make-wrap (car marks) subst))
                                 mod)
                           results))))))
        (define scan-vector-rib
          (lambda (subst symnames marks results)
            (let ((n (vector-length symnames)))
              (let f ((i 0) (results results))
                (if (fx= i n)
                    (scan (cdr subst) results)
                    (f (fx+ i 1)
                       (cons (wrap (vector-ref symnames i)
                                   (anti-mark (make-wrap (vector-ref marks i) subst))
                                   mod)
                             results)))))))
        (scan (wrap-subst w) '())))

    ;; Returns three values: binding type, binding value, and the module
    ;; (for resolving toplevel vars).
    (define (resolve-identifier id w r mod resolve-syntax-parameters?)
      (define (resolve-global var mod)
        (when (and (not mod) (current-module))
          (warn "module system is booted, we should have a module" var))
        (let ((v (and (not (equal? mod '(primitive)))
                      (module-variable (if mod
                                           (resolve-module (cdr mod))
                                           (current-module))
                                       var))))
          ;; The expander needs to know when a top-level definition from
          ;; outside the compilation unit is a macro.
          ;;
          ;; Additionally if a macro is actually a syntax-parameter, we
          ;; might need to resolve its current binding.  If the syntax
          ;; parameter is locally bound (via syntax-parameterize), then
          ;; its variable will be present in `r', the expand-time
          ;; environment.  It's a kind of double lookup: first we see
          ;; that a name is bound to a syntax parameter, then we look
          ;; for the current binding of the syntax parameter.
          ;;
          ;; We use the variable (box) holding the syntax parameter
          ;; definition as the key for the second lookup.  We use the
          ;; variable for two reasons:
          ;;
          ;;   1. If the syntax parameter is redefined in parallel
          ;;   (perhaps via a parallel module compilation), the
          ;;   redefinition keeps the same variable.  We don't want to
          ;;   use a "key" that could change during a redefinition.  See
          ;;   https://debbugs.gnu.org/cgi/bugreport.cgi?bug=27476.
          ;;
          ;;   2. Using the variable instead of its (symname, modname)
          ;;   pair allows for syntax parameters to be renamed or
          ;;   aliased while preserving the syntax parameter's identity.
          ;;
          (if (and v (variable-bound? v) (macro? (variable-ref v)))
              (let* ((m (variable-ref v))
                     (type (macro-type m))
                     (trans (macro-binding m))
                     (trans (if (pair? trans) (car trans) trans)))
                (if (eq? type 'syntax-parameter)
                    (if resolve-syntax-parameters?
                        (let ((lexical (assq-ref r v)))
                          ;; A resolved syntax parameter is
                          ;; indistinguishable from a macro.
                          (values 'macro
                                  (if lexical
                                      (binding-value lexical)
                                      trans)
                                  mod))
                        ;; Return box as value for use in second lookup.
                        (values type v mod))
                    (values type trans mod)))
              (values 'global var mod))))
      (define (resolve-lexical label mod)
        (let ((b (assq-ref r label)))
          (if b
              (let ((type (binding-type b))
                    (value (binding-value b)))
                (if (eq? type 'syntax-parameter)
                    (if resolve-syntax-parameters?
                        (values 'macro value mod)
                        ;; If the syntax parameter was defined within
                        ;; this compilation unit, use its label as its
                        ;; lookup key.
                        (values type label mod))
                    (values type value mod)))
              (values 'displaced-lexical #f #f))))
      (let ((n (id-var-name id w mod)))
        (cond
         ((syntax-object? n)
          (cond
           ((not (eq? n id))
            ;; This identifier aliased another; recurse to allow
            ;; syntax-parameterize to override macro-introduced syntax
            ;; parameters.
            (resolve-identifier n w r mod resolve-syntax-parameters?))
           (else
            ;; Resolved to a free variable that was introduced by this
            ;; macro; continue to resolve this global by name.
            (resolve-identifier (syntax-object-expression n)
                                (syntax-object-wrap n)
                                r
                                (syntax-object-module n)
                                resolve-syntax-parameters?))))
         ((symbol? n)
          (resolve-global n (if (syntax-object? id)
                                (syntax-object-module id)
                                mod)))
         ((string? n)
          (resolve-lexical n (if (syntax-object? id)
                                 (syntax-object-module id)
                                 mod)))
         (else
          (error "unexpected id-var-name" id w n)))))

    (define transformer-environment
      (make-fluid
       (lambda (k)
         (error "called outside the dynamic extent of a syntax transformer"))))

    (define (with-transformer-environment k)
      ((fluid-ref transformer-environment) k))

    ;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
    ;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.

    (define free-id=?
      (lambda (i j)
        (let* ((mi (and (syntax-object? i) (syntax-object-module i)))
               (mj (and (syntax-object? j) (syntax-object-module j)))
               (ni (id-var-name i empty-wrap mi))
               (nj (id-var-name j empty-wrap mj)))
          (define (id-module-binding id mod)
            (module-variable
             (if mod
                 ;; The normal case.
                 (resolve-module (cdr mod))
                 ;; Either modules have not been booted, or we have a
                 ;; raw symbol coming in, which is possible.
                 (current-module))
             (id-sym-name id)))
          (cond
           ((syntax-object? ni) (free-id=? ni j))
           ((syntax-object? nj) (free-id=? i nj))
           ((symbol? ni)
            ;; `i' is not lexically bound.  Assert that `j' is free,
            ;; and if so, compare their bindings, that they are either
            ;; bound to the same variable, or both unbound and have
            ;; the same name.
            (and (eq? nj (id-sym-name j))
                 (let ((bi (id-module-binding i mi)))
                   (if bi
                       (eq? bi (id-module-binding j mj))
                       (and (not (id-module-binding j mj))
                            (eq? ni nj))))
                 (eq? (id-module-binding i mi) (id-module-binding j mj))))
           (else
            ;; Otherwise `i' is bound, so check that `j' is bound, and
            ;; bound to the same thing.
            (equal? ni nj))))))
    
    ;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
    ;; long as the missing portion of the wrap is common to both of the ids
    ;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))

    (define bound-id=?
      (lambda (i j)
        (if (and (syntax-object? i) (syntax-object? j))
            (and (eq? (syntax-object-expression i)
                      (syntax-object-expression j))
                 (same-marks? (wrap-marks (syntax-object-wrap i))
                              (wrap-marks (syntax-object-wrap j))))
            (eq? i j))))

    ;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
    ;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
    ;; as long as the missing portion of the wrap is common to all of the
    ;; ids.

    (define valid-bound-ids?
      (lambda (ids)
        (and (let all-ids? ((ids ids))
               (or (null? ids)
                   (and (id? (car ids))
                        (all-ids? (cdr ids)))))
             (distinct-bound-ids? ids))))

    ;; distinct-bound-ids? expects a list of ids and returns #t if there are
    ;; no duplicates.  It is quadratic on the length of the id list; long
    ;; lists could be sorted to make it more efficient.  distinct-bound-ids?
    ;; may be passed unwrapped (or partially wrapped) ids as long as the
    ;; missing portion of the wrap is common to all of the ids.

    (define distinct-bound-ids?
      (lambda (ids)
        (let distinct? ((ids ids))
          (or (null? ids)
              (and (not (bound-id-member? (car ids) (cdr ids)))
                   (distinct? (cdr ids)))))))

    (define bound-id-member?
      (lambda (x list)
        (and (not (null? list))
             (or (bound-id=? x (car list))
                 (bound-id-member? x (cdr list))))))

    ;; wrapping expressions and identifiers

    (define wrap
      (lambda (x w defmod)
        (cond
         ((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
         ((syntax-object? x)
          (make-syntax-object
           (syntax-object-expression x)
           (join-wraps w (syntax-object-wrap x))
           (syntax-object-module x)))
         ((null? x) x)
         (else (make-syntax-object x w defmod)))))

    (define source-wrap
      (lambda (x w s defmod)
        (wrap (decorate-source x s) w defmod)))

    ;; expanding

    (define expand-sequence
      (lambda (body r w s mod)
        (build-sequence s
                        (let dobody ((body body) (r r) (w w) (mod mod))
                          (if (null? body)
                              '()
                              (let ((first (expand (car body) r w mod)))
                                (cons first (dobody (cdr body) r w mod))))))))

    ;; At top-level, we allow mixed definitions and expressions.  Like
    ;; expand-body we expand in two passes.
    ;;
    ;; First, from left to right, we expand just enough to know what
    ;; expressions are definitions, syntax definitions, and splicing
    ;; statements (`begin').  If we anything needs evaluating at
    ;; expansion-time, it is expanded directly.
    ;;
    ;; Otherwise we collect expressions to expand, in thunks, and then
    ;; expand them all at the end.  This allows all syntax expanders
    ;; visible in a toplevel sequence to be visible during the
    ;; expansions of all normal definitions and expressions in the
    ;; sequence.
    ;;
    (define expand-top-sequence
      (lambda (body r w s m esew mod)
        (let* ((r (cons '("placeholder" . (placeholder)) r))
               (ribcage (make-empty-ribcage))
               (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
          (define (record-definition! id var)
            (let ((mod (cons 'hygiene (module-name (current-module)))))
              ;; Ribcages map symbol+marks to names, mostly for
              ;; resolving lexicals.  Here to add a mapping for toplevel
              ;; definitions we also need to match the module.  So, we
              ;; put it in the name instead, and make id-var-name handle
              ;; the special case of names that are pairs.  See the
              ;; comments in id-var-name for more.
              (extend-ribcage! ribcage id
                               (cons (syntax-object-module id)
                                     (wrap var top-wrap mod)))))
          (define (macro-introduced-identifier? id)
            (not (equal? (wrap-marks (syntax-object-wrap id)) '(top))))
          (define (fresh-derived-name id orig-form)
            (symbol-append
             (syntax-object-expression id)
             '-
             (string->symbol
              ;; FIXME: `hash' currently stops descending into nested
              ;; data at some point, so it's less unique than we would
              ;; like.  Also this encodes hash values into the ABI of
              ;; compiled modules; a problem?
              (number->string
               (hash (syntax->datum orig-form) most-positive-fixnum)
               16))))
          (define (parse body r w s m esew mod)
            (let lp ((body body) (exps '()))
              (if (null? body)
                  exps
                  (lp (cdr body)
                      (append (parse1 (car body) r w s m esew mod)
                              exps)))))
          (define (parse1 x r w s m esew mod)
            (define (current-module-for-expansion mod)
              (case (car mod)
                ;; If the module was just put in place for hygiene, in a
                ;; top-level `begin' always recapture the current
                ;; module.  If a user wants to override, then we need to
                ;; use @@ or similar.
                ((hygiene) (cons 'hygiene (module-name (current-module))))
                (else mod)))
            (call-with-values
                (lambda ()
                  (let ((mod (current-module-for-expansion mod)))
                    (syntax-type x r w (source-annotation x) ribcage mod #f)))
              (lambda (type value form e w s mod)
                (case type
                  ((define-form)
                   (let* ((id (wrap value w mod))
                          (label (gen-label))
                          (var (if (macro-introduced-identifier? id)
                                   (fresh-derived-name id x)
                                   (syntax-object-expression id))))
                     (record-definition! id var)
                     (list
                      (if (eq? m 'c&e)
                          (let ((x (build-global-definition s var (expand e r w mod))))
                            (top-level-eval-hook x mod)
                            (lambda () x))
                          (call-with-values
                              (lambda () (resolve-identifier id empty-wrap r mod #t))
                            (lambda (type* value* mod*)
                              ;; If the identifier to be bound is currently bound to a
                              ;; macro, then immediately discard that binding.
                              (if (eq? type* 'macro)
                                  (top-level-eval-hook (build-global-definition
                                                        s var (build-void s))
                                                       mod))
                              (lambda ()
                                (build-global-definition s var (expand e r w mod)))))))))
                  ((define-syntax-form define-syntax-parameter-form)
                   (let* ((id (wrap value w mod))
                          (label (gen-label))
                          (var (if (macro-introduced-identifier? id)
                                   (fresh-derived-name id x)
                                   (syntax-object-expression id))))
                     (record-definition! id var)
                     (case m
                       ((c)
                        (cond
                         ((memq 'compile esew)
                          (let ((e (expand-install-global var type (expand e r w mod))))
                            (top-level-eval-hook e mod)
                            (if (memq 'load esew)
                                (list (lambda () e))
                                '())))
                         ((memq 'load esew)
                          (list (lambda ()
                                  (expand-install-global var type (expand e r w mod)))))
                         (else '())))
                       ((c&e)
                        (let ((e (expand-install-global var type (expand e r w mod))))
                          (top-level-eval-hook e mod)
                          (list (lambda () e))))
                       (else
                        (if (memq 'eval esew)
                            (top-level-eval-hook
                             (expand-install-global var type (expand e r w mod))
                             mod))
                        '()))))
                  ((begin-form)
                   (syntax-case e ()
                     ((_ e1 ...)
                      (parse #'(e1 ...) r w s m esew mod))))
                  ((local-syntax-form)
                   (expand-local-syntax value e r w s mod
                                        (lambda (forms r w s mod)
                                          (parse forms r w s m esew mod))))
                  ((eval-when-form)
                   (syntax-case e ()
                     ((_ (x ...) e1 e2 ...)
                      (let ((when-list (parse-when-list e #'(x ...)))
                            (body #'(e1 e2 ...)))
                        (define (recurse m esew)
                          (parse body r w s m esew mod))
                        (cond
                         ((eq? m 'e)
                          (if (memq 'eval when-list)
                              (recurse (if (memq 'expand when-list) 'c&e 'e)
                                       '(eval))
                              (begin
                                (if (memq 'expand when-list)
                                    (top-level-eval-hook
                                     (expand-top-sequence body r w s 'e '(eval) mod)
                                     mod))
                                '())))
                         ((memq 'load when-list)
                          (if (or (memq 'compile when-list)
                                  (memq 'expand when-list)
                                  (and (eq? m 'c&e) (memq 'eval when-list)))
                              (recurse 'c&e '(compile load))
                              (if (memq m '(c c&e))
                                  (recurse 'c '(load))
                                  '())))
                         ((or (memq 'compile when-list)
                              (memq 'expand when-list)
                              (and (eq? m 'c&e) (memq 'eval when-list)))
                          (top-level-eval-hook
                           (expand-top-sequence body r w s 'e '(eval) mod)
                           mod)
                          '())
                         (else
                          '()))))))
                  (else
                   (list
                    (if (eq? m 'c&e)
                        (let ((x (expand-expr type value form e r w s mod)))
                          (top-level-eval-hook x mod)
                          (lambda () x))
                        (lambda ()
                          (expand-expr type value form e r w s mod)))))))))
          (let ((exps (map (lambda (x) (x))
                           (reverse (parse body r w s m esew mod)))))
            (if (null? exps)
                (build-void s)
                (build-sequence s exps))))))
    
    (define expand-install-global
      (lambda (name type e)
        (build-global-definition
         no-source
         name
         (build-primcall
          no-source
          'make-syntax-transformer
          (list (build-data no-source name)
                (build-data no-source
                            (if (eq? type 'define-syntax-parameter-form)
                                'syntax-parameter
                                'macro))
                e)))))
    
    (define parse-when-list
      (lambda (e when-list)
        ;; `when-list' is syntax'd version of list of situations.  We
        ;; could match these keywords lexically, via free-id=?, but then
        ;; we twingle the definition of eval-when to the bindings of
        ;; eval, load, expand, and compile, which is totally unintended.
        ;; So do a symbolic match instead.
        (let ((result (strip when-list empty-wrap)))
          (let lp ((l result))
            (if (null? l)
                result
                (if (memq (car l) '(compile load eval expand))
                    (lp (cdr l))
                    (syntax-violation 'eval-when "invalid situation" e
                                      (car l))))))))

    ;; syntax-type returns seven values: type, value, form, e, w, s, and
    ;; mod. The first two are described in the table below.
    ;;
    ;;    type                   value         explanation
    ;;    -------------------------------------------------------------------
    ;;    core                   procedure     core singleton
    ;;    core-form              procedure     core form
    ;;    module-ref             procedure     @ or @@ singleton
    ;;    lexical                name          lexical variable reference
    ;;    global                 name          global variable reference
    ;;    begin                  none          begin keyword
    ;;    define                 none          define keyword
    ;;    define-syntax          none          define-syntax keyword
    ;;    define-syntax-parameter none         define-syntax-parameter keyword
    ;;    local-syntax           rec?          letrec-syntax/let-syntax keyword
    ;;    eval-when              none          eval-when keyword
    ;;    syntax                 level         pattern variable
    ;;    displaced-lexical      none          displaced lexical identifier
    ;;    lexical-call           name          call to lexical variable
    ;;    global-call            name          call to global variable
    ;;    primitive-call         name          call to primitive
    ;;    call                   none          any other call
    ;;    begin-form             none          begin expression
    ;;    define-form            id            variable definition
    ;;    define-syntax-form     id            syntax definition
    ;;    define-syntax-parameter-form id      syntax parameter definition
    ;;    local-syntax-form      rec?          syntax definition
    ;;    eval-when-form         none          eval-when form
    ;;    constant               none          self-evaluating datum
    ;;    other                  none          anything else
    ;;
    ;; form is the entire form.  For definition forms (define-form,
    ;; define-syntax-form, and define-syntax-parameter-form), e is the
    ;; rhs expression.  For all others, e is the entire form.  w is the
    ;; wrap for both form and e.  s is the source for the entire form.
    ;; mod is the module for both form and e.
    ;;
    ;; syntax-type expands macros and unwraps as necessary to get to one
    ;; of the forms above.  It also parses definition forms, although
    ;; perhaps this should be done by the consumer.

    (define syntax-type
      (lambda (e r w s rib mod for-car?)
        (cond
         ((symbol? e)
          (call-with-values (lambda () (resolve-identifier e w r mod #t))
            (lambda (type value mod*)
              (case type
                ((macro)
                 (if for-car?
                     (values type value e e w s mod)
                     (syntax-type (expand-macro value e r w s rib mod)
                                  r empty-wrap s rib mod #f)))
                ((global)
                 ;; Toplevel definitions may resolve to bindings with
                 ;; different names or in different modules.
                 (values type value e value w s mod*))
                (else (values type value e e w s mod))))))
         ((pair? e)
          (let ((first (car e)))
            (call-with-values
                (lambda () (syntax-type first r w s rib mod #t))
              (lambda (ftype fval fform fe fw fs fmod)
                (case ftype
                  ((lexical)
                   (values 'lexical-call fval e e w s mod))
                  ((global)
                   (if (equal? fmod '(primitive))
                       (values 'primitive-call fval e e w s mod)
                       ;; If we got here via an (@@ ...) expansion, we
                       ;; need to make sure the fmod information is
                       ;; propagated back correctly -- hence this
                       ;; consing.
                       (values 'global-call (make-syntax-object fval w fmod)
                               e e w s mod)))
                  ((macro)
                   (syntax-type (expand-macro fval e r w s rib mod)
                                r empty-wrap s rib mod for-car?))
                  ((module-ref)
                   (call-with-values (lambda () (fval e r w mod))
                     (lambda (e r w s mod)
                       (syntax-type e r w s rib mod for-car?))))
                  ((core)
                   (values 'core-form fval e e w s mod))
                  ((local-syntax)
                   (values 'local-syntax-form fval e e w s mod))
                  ((begin)
                   (values 'begin-form #f e e w s mod))
                  ((eval-when)
                   (values 'eval-when-form #f e e w s mod))
                  ((define)
                   (syntax-case e ()
                     ((_ name val)
                      (id? #'name)
                      (values 'define-form #'name e #'val w s mod))
                     ((_ (name . args) e1 e2 ...)
                      (and (id? #'name)
                           (valid-bound-ids? (lambda-var-list #'args)))
                      ;; need lambda here...
                      (values 'define-form (wrap #'name w mod)
                              (wrap e w mod)
                              (decorate-source
                               (cons #'lambda (wrap #'(args e1 e2 ...) w mod))
                               s)
                              empty-wrap s mod))
                     ((_ name)
                      (id? #'name)
                      (values 'define-form (wrap #'name w mod)
                              (wrap e w mod)
                              #'(if #f #f)
                              empty-wrap s mod))))
                  ((define-syntax)
                   (syntax-case e ()
                     ((_ name val)
                      (id? #'name)
                      (values 'define-syntax-form #'name e #'val w s mod))))
                  ((define-syntax-parameter)
                   (syntax-case e ()
                     ((_ name val)
                      (id? #'name)
                      (values 'define-syntax-parameter-form #'name e #'val w s mod))))
                  (else
                   (values 'call #f e e w s mod)))))))
         ((syntax-object? e)
          (syntax-type (syntax-object-expression e)
                       r
                       (join-wraps w (syntax-object-wrap e))
                       (or (source-annotation e) s) rib
                       (or (syntax-object-module e) mod) for-car?))
         ((self-evaluating? e) (values 'constant #f e e w s mod))
         (else (values 'other #f e e w s mod)))))

    (define expand
      (lambda (e r w mod)
        (call-with-values
            (lambda () (syntax-type e r w (source-annotation e) #f mod #f))
          (lambda (type value form e w s mod)
            (expand-expr type value form e r w s mod)))))

    (define expand-expr
      (lambda (type value form e r w s mod)
        (case type
          ((lexical)
           (build-lexical-reference 'value s e value))
          ((core core-form)
           ;; apply transformer
           (value e r w s mod))
          ((module-ref)
           (call-with-values (lambda () (value e r w mod))
             (lambda (e r w s mod)
               (expand e r w mod))))
          ((lexical-call)
           (expand-call
            (let ((id (car e)))
              (build-lexical-reference 'fun (source-annotation id)
                                       (if (syntax-object? id)
                                           (syntax->datum id)
                                           id)
                                       value))
            e r w s mod))
          ((global-call)
           (expand-call
            (build-global-reference (source-annotation (car e))
                                    (if (syntax-object? value)
                                        (syntax-object-expression value)
                                        value)
                                    (if (syntax-object? value)
                                        (syntax-object-module value)
                                        mod))
            e r w s mod))
          ((primitive-call)
           (syntax-case e ()
             ((_ e ...)
              (build-primcall s
                              value
                              (map (lambda (e) (expand e r w mod))
                                   #'(e ...))))))
          ((constant) (build-data s (strip (source-wrap e w s mod) empty-wrap)))
          ((global) (build-global-reference s value mod))
          ((call) (expand-call (expand (car e) r w mod) e r w s mod))
          ((begin-form)
           (syntax-case e ()
             ((_ e1 e2 ...) (expand-sequence #'(e1 e2 ...) r w s mod))
             ((_)
              (syntax-violation #f "sequence of zero expressions"
                                (source-wrap e w s mod)))))
          ((local-syntax-form)
           (expand-local-syntax value e r w s mod expand-sequence))
          ((eval-when-form)
           (syntax-case e ()
             ((_ (x ...) e1 e2 ...)
              (let ((when-list (parse-when-list e #'(x ...))))
                (if (memq 'eval when-list)
                    (expand-sequence #'(e1 e2 ...) r w s mod)
                    (expand-void))))))
          ((define-form define-syntax-form define-syntax-parameter-form)
           (syntax-violation #f "definition in expression context, where definitions are not allowed,"
                             (source-wrap form w s mod)))
          ((syntax)
           (syntax-violation #f "reference to pattern variable outside syntax form"
                             (source-wrap e w s mod)))
          ((displaced-lexical)
           (syntax-violation #f "reference to identifier outside its scope"
                             (source-wrap e w s mod)))
          (else (syntax-violation #f "unexpected syntax"
                                  (source-wrap e w s mod))))))

    (define expand-call
      (lambda (x e r w s mod)
        (syntax-case e ()
          ((e0 e1 ...)
           (build-call s x
                       (map (lambda (e) (expand e r w mod)) #'(e1 ...)))))))

    ;; (What follows is my interpretation of what's going on here -- Andy)
    ;;
    ;; A macro takes an expression, a tree, the leaves of which are identifiers
    ;; and datums. Identifiers are symbols along with a wrap and a module. For
    ;; efficiency, subtrees that share wraps and modules may be grouped as one
    ;; syntax object.
    ;;
    ;; Going into the expansion, the expression is given an anti-mark, which
    ;; logically propagates to all leaves. Then, in the new expression returned
    ;; from the transfomer, if we see an expression with an anti-mark, we know it
    ;; pertains to the original expression; conversely, expressions without the
    ;; anti-mark are known to be introduced by the transformer.
    ;;
    ;; OK, good until now. We know this algorithm does lexical scoping
    ;; appropriately because it's widely known in the literature, and psyntax is
    ;; widely used. But what about modules? Here we're on our own. What we do is
    ;; to mark the module of expressions produced by a macro as pertaining to the
    ;; module that was current when the macro was defined -- that is, free
    ;; identifiers introduced by a macro are scoped in the macro's module, not in
    ;; the expansion's module. Seems to work well.
    ;;
    ;; The only wrinkle is when we want a macro to expand to code in another
    ;; module, as is the case for the r6rs `library' form -- the body expressions
    ;; should be scoped relative the the new module, the one defined by the macro.
    ;; For that, use `(@@ mod-name body)'.
    ;;
    ;; Part of the macro output will be from the site of the macro use and part
    ;; from the macro definition. We allow source information from the macro use
    ;; to pass through, but we annotate the parts coming from the macro with the
    ;; source location information corresponding to the macro use. It would be
    ;; really nice if we could also annotate introduced expressions with the
    ;; locations corresponding to the macro definition, but that is not yet
    ;; possible.
    (define expand-macro
      (lambda (p e r w s rib mod)
        (define rebuild-macro-output
          (lambda (x m)
            (cond ((pair? x)
                   (decorate-source 
                    (cons (rebuild-macro-output (car x) m)
                          (rebuild-macro-output (cdr x) m))
                    s))
                  ((syntax-object? x)
                   (let ((w (syntax-object-wrap x)))
                     (let ((ms (wrap-marks w)) (ss (wrap-subst w)))
                       (if (and (pair? ms) (eq? (car ms) the-anti-mark))
                           ;; output is from original text
                           (make-syntax-object
                            (syntax-object-expression x)
                            (make-wrap (cdr ms) (if rib (cons rib (cdr ss)) (cdr ss)))
                            (syntax-object-module x))
                           ;; output introduced by macro
                           (make-syntax-object
                            (decorate-source (syntax-object-expression x) s)
                            (make-wrap (cons m ms)
                                       (if rib
                                           (cons rib (cons 'shift ss))
                                           (cons 'shift ss)))
                            (syntax-object-module x))))))
                
                  ((vector? x)
                   (let* ((n (vector-length x))
                          (v (decorate-source (make-vector n) s)))
                     (do ((i 0 (fx+ i 1)))
                         ((fx= i n) v)
                       (vector-set! v i
                                    (rebuild-macro-output (vector-ref x i) m)))))
                  ((symbol? x)
                   (syntax-violation #f "encountered raw symbol in macro output"
                                     (source-wrap e w (wrap-subst w) mod) x))
                  (else (decorate-source x s)))))
        (with-fluids ((transformer-environment
                       (lambda (k) (k e r w s rib mod))))
          (rebuild-macro-output (p (source-wrap e (anti-mark w) s mod))
                                (new-mark)))))

    (define expand-body
      ;; In processing the forms of the body, we create a new, empty wrap.
      ;; This wrap is augmented (destructively) each time we discover that
      ;; the next form is a definition.  This is done:
      ;;
      ;;   (1) to allow the first nondefinition form to be a call to
      ;;       one of the defined ids even if the id previously denoted a
      ;;       definition keyword or keyword for a macro expanding into a
      ;;       definition;
      ;;   (2) to prevent subsequent definition forms (but unfortunately
      ;;       not earlier ones) and the first nondefinition form from
      ;;       confusing one of the bound identifiers for an auxiliary
      ;;       keyword; and
      ;;   (3) so that we do not need to restart the expansion of the
      ;;       first nondefinition form, which is problematic anyway
      ;;       since it might be the first element of a begin that we
      ;;       have just spliced into the body (meaning if we restarted,
      ;;       we'd really need to restart with the begin or the macro
      ;;       call that expanded into the begin, and we'd have to give
      ;;       up allowing (begin <defn>+ <expr>+), which is itself
      ;;       problematic since we don't know if a begin contains only
      ;;       definitions until we've expanded it).
      ;;
      ;; Before processing the body, we also create a new environment
      ;; containing a placeholder for the bindings we will add later and
      ;; associate this environment with each form.  In processing a
      ;; let-syntax or letrec-syntax, the associated environment may be
      ;; augmented with local keyword bindings, so the environment may
      ;; be different for different forms in the body.  Once we have
      ;; gathered up all of the definitions, we evaluate the transformer
      ;; expressions and splice into r at the placeholder the new variable
      ;; and keyword bindings.  This allows let-syntax or letrec-syntax
      ;; forms local to a portion or all of the body to shadow the
      ;; definition bindings.
      ;;
      ;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
      ;; into the body.
      ;;
      ;; outer-form is fully wrapped w/source
      (lambda (body outer-form r w mod)
        (let* ((r (cons '("placeholder" . (placeholder)) r))
               (ribcage (make-empty-ribcage))
               (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
          (let parse ((body (map (lambda (x) (cons r (wrap x w mod))) body))
                      (ids '()) (labels '())
                      (var-ids '()) (vars '()) (vals '()) (bindings '()))
            (if (null? body)
                (syntax-violation #f "no expressions in body" outer-form)
                (let ((e (cdar body)) (er (caar body)))
                  (call-with-values
                      (lambda () (syntax-type e er empty-wrap (source-annotation e) ribcage mod #f))
                    (lambda (type value form e w s mod)
                      (case type
                        ((define-form)
                         (let ((id (wrap value w mod)) (label (gen-label)))
                           (let ((var (gen-var id)))
                             (extend-ribcage! ribcage id label)
                             (parse (cdr body)
                                    (cons id ids) (cons label labels)
                                    (cons id var-ids)
                                    (cons var vars) (cons (cons er (wrap e w mod)) vals)
                                    (cons (make-binding 'lexical var) bindings)))))
                        ((define-syntax-form)
                         (let ((id (wrap value w mod))
                               (label (gen-label))
                               (trans-r (macros-only-env er)))
                           (extend-ribcage! ribcage id label)
                           ;; As required by R6RS, evaluate the right-hand-sides of internal
                           ;; syntax definition forms and add their transformers to the
                           ;; compile-time environment immediately, so that the newly-defined
                           ;; keywords may be used in definition context within the same
                           ;; lexical contour.
                           (set-cdr! r (extend-env
                                        (list label)
                                        (list (make-binding
                                               'macro
                                               (eval-local-transformer
                                                (expand e trans-r w mod)
                                                mod)))
                                        (cdr r)))
                           (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
                        ((define-syntax-parameter-form)
                         ;; Same as define-syntax-form, different binding type though.
                         (let ((id (wrap value w mod))
                               (label (gen-label))
                               (trans-r (macros-only-env er)))
                           (extend-ribcage! ribcage id label)
                           (set-cdr! r (extend-env
                                        (list label)
                                        (list (make-binding
                                               'syntax-parameter
                                               (eval-local-transformer
                                                (expand e trans-r w mod)
                                                mod)))
                                        (cdr r)))
                           (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
                        ((begin-form)
                         (syntax-case e ()
                           ((_ e1 ...)
                            (parse (let f ((forms #'(e1 ...)))
                                     (if (null? forms)
                                         (cdr body)
                                         (cons (cons er (wrap (car forms) w mod))
                                               (f (cdr forms)))))
                                   ids labels var-ids vars vals bindings))))
                        ((local-syntax-form)
                         (expand-local-syntax value e er w s mod
                                              (lambda (forms er w s mod)
                                                (parse (let f ((forms forms))
                                                         (if (null? forms)
                                                             (cdr body)
                                                             (cons (cons er (wrap (car forms) w mod))
                                                                   (f (cdr forms)))))
                                                       ids labels var-ids vars vals bindings))))
                        (else           ; found a non-definition
                         (if (null? ids)
                             (build-sequence no-source
                                             (map (lambda (x)
                                                    (expand (cdr x) (car x) empty-wrap mod))
                                                  (cons (cons er (source-wrap e w s mod))
                                                        (cdr body))))
                             (begin
                               (if (not (valid-bound-ids? ids))
                                   (syntax-violation
                                    #f "invalid or duplicate identifier in definition"
                                    outer-form))
                               (set-cdr! r (extend-env labels bindings (cdr r)))
                               (build-letrec no-source #t
                                             (reverse (map syntax->datum var-ids))
                                             (reverse vars)
                                             (map (lambda (x)
                                                    (expand (cdr x) (car x) empty-wrap mod))
                                                  (reverse vals))
                                             (build-sequence no-source
                                                             (map (lambda (x)
                                                                    (expand (cdr x) (car x) empty-wrap mod))
                                                                  (cons (cons er (source-wrap e w s mod))
                                                                        (cdr body)))))))))))))))))

    (define expand-local-syntax
      (lambda (rec? e r w s mod k)
        (syntax-case e ()
          ((_ ((id val) ...) e1 e2 ...)
           (let ((ids #'(id ...)))
             (if (not (valid-bound-ids? ids))
                 (syntax-violation #f "duplicate bound keyword" e)
                 (let ((labels (gen-labels ids)))
                   (let ((new-w (make-binding-wrap ids labels w)))
                     (k #'(e1 e2 ...)
                        (extend-env
                         labels
                         (let ((w (if rec? new-w w))
                               (trans-r (macros-only-env r)))
                           (map (lambda (x)
                                  (make-binding 'macro
                                                (eval-local-transformer
                                                 (expand x trans-r w mod)
                                                 mod)))
                                #'(val ...)))
                         r)
                        new-w
                        s
                        mod))))))
          (_ (syntax-violation #f "bad local syntax definition"
                               (source-wrap e w s mod))))))

    (define eval-local-transformer
      (lambda (expanded mod)
        (let ((p (local-eval-hook expanded mod)))
          (if (procedure? p)
              p
              (syntax-violation #f "nonprocedure transformer" p)))))

    (define expand-void
      (lambda ()
        (build-void no-source)))

    (define ellipsis?
      (lambda (e r mod)
        (and (nonsymbol-id? e)
             ;; If there is a binding for the special identifier
             ;; #{ $sc-ellipsis }# in the lexical environment of E,
             ;; and if the associated binding type is 'ellipsis',
             ;; then the binding's value specifies the custom ellipsis
             ;; identifier within that lexical environment, and the
             ;; comparison is done using 'bound-id=?'.
             (call-with-values
                 (lambda () (resolve-identifier
                             (make-syntax-object '#{ $sc-ellipsis }#
                                                 (syntax-object-wrap e)
                                                 (syntax-object-module e))
                             empty-wrap r mod #f))
               (lambda (type value mod)
                 (if (eq? type 'ellipsis)
                     (bound-id=? e value)
                     (free-id=? e #'(... ...))))))))

    (define lambda-formals
      (lambda (orig-args)
        (define (req args rreq)
          (syntax-case args ()
            (()
             (check (reverse rreq) #f))
            ((a . b) (id? #'a)
             (req #'b (cons #'a rreq)))
            (r (id? #'r)
               (check (reverse rreq) #'r))
            (else
             (syntax-violation 'lambda "invalid argument list" orig-args args))))
        (define (check req rest)
          (cond
           ((distinct-bound-ids? (if rest (cons rest req) req))
            (values req #f rest #f))
           (else
            (syntax-violation 'lambda "duplicate identifier in argument list"
                              orig-args))))
        (req orig-args '())))

    (define expand-simple-lambda
      (lambda (e r w s mod req rest meta body)
        (let* ((ids (if rest (append req (list rest)) req))
               (vars (map gen-var ids))
               (labels (gen-labels ids)))
          (build-simple-lambda
           s
           (map syntax->datum req) (and rest (syntax->datum rest)) vars
           meta
           (expand-body body (source-wrap e w s mod)
                        (extend-var-env labels vars r)
                        (make-binding-wrap ids labels w)
                        mod)))))

    (define lambda*-formals
      (lambda (orig-args)
        (define (req args rreq)
          (syntax-case args ()
            (()
             (check (reverse rreq) '() #f '()))
            ((a . b) (id? #'a)
             (req #'b (cons #'a rreq)))
            ((a . b) (eq? (syntax->datum #'a) #:optional)
             (opt #'b (reverse rreq) '()))
            ((a . b) (eq? (syntax->datum #'a) #:key)
             (key #'b (reverse rreq) '() '()))
            ((a b) (eq? (syntax->datum #'a) #:rest)
             (rest #'b (reverse rreq) '() '()))
            (r (id? #'r)
               (rest #'r (reverse rreq) '() '()))
            (else
             (syntax-violation 'lambda* "invalid argument list" orig-args args))))
        (define (opt args req ropt)
          (syntax-case args ()
            (()
             (check req (reverse ropt) #f '()))
            ((a . b) (id? #'a)
             (opt #'b req (cons #'(a #f) ropt)))
            (((a init) . b) (id? #'a)
             (opt #'b req (cons #'(a init) ropt)))
            ((a . b) (eq? (syntax->datum #'a) #:key)
             (key #'b req (reverse ropt) '()))
            ((a b) (eq? (syntax->datum #'a) #:rest)
             (rest #'b req (reverse ropt) '()))
            (r (id? #'r)
               (rest #'r req (reverse ropt) '()))
            (else
             (syntax-violation 'lambda* "invalid optional argument list"
                               orig-args args))))
        (define (key args req opt rkey)
          (syntax-case args ()
            (()
             (check req opt #f (cons #f (reverse rkey))))
            ((a . b) (id? #'a)
             (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
               (key #'b req opt (cons #'(k a #f) rkey))))
            (((a init) . b) (id? #'a)
             (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
               (key #'b req opt (cons #'(k a init) rkey))))
            (((a init k) . b) (and (id? #'a)
                                   (keyword? (syntax->datum #'k)))
             (key #'b req opt (cons #'(k a init) rkey)))
            ((aok) (eq? (syntax->datum #'aok) #:allow-other-keys)
             (check req opt #f (cons #t (reverse rkey))))
            ((aok a b) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
                            (eq? (syntax->datum #'a) #:rest))
             (rest #'b req opt (cons #t (reverse rkey))))
            ((aok . r) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
                            (id? #'r))
             (rest #'r req opt (cons #t (reverse rkey))))
            ((a b) (eq? (syntax->datum #'a) #:rest)
             (rest #'b req opt (cons #f (reverse rkey))))
            (r (id? #'r)
               (rest #'r req opt (cons #f (reverse rkey))))
            (else
             (syntax-violation 'lambda* "invalid keyword argument list"
                               orig-args args))))
        (define (rest args req opt kw)
          (syntax-case args ()
            (r (id? #'r)
               (check req opt #'r kw))
            (else
             (syntax-violation 'lambda* "invalid rest argument"
                               orig-args args))))
        (define (check req opt rest kw)
          (cond
           ((distinct-bound-ids?
             (append req (map car opt) (if rest (list rest) '())
                     (if (pair? kw) (map cadr (cdr kw)) '())))
            (values req opt rest kw))
           (else
            (syntax-violation 'lambda* "duplicate identifier in argument list"
                              orig-args))))
        (req orig-args '())))

    (define expand-lambda-case
      (lambda (e r w s mod get-formals clauses)
        (define (parse-req req opt rest kw body)
          (let ((vars (map gen-var req))
                (labels (gen-labels req)))
            (let ((r* (extend-var-env labels vars r))
                  (w* (make-binding-wrap req labels w)))
              (parse-opt (map syntax->datum req)
                         opt rest kw body (reverse vars) r* w* '() '()))))
        (define (parse-opt req opt rest kw body vars r* w* out inits)
          (cond
           ((pair? opt)
            (syntax-case (car opt) ()
              ((id i)
               (let* ((v (gen-var #'id))
                      (l (gen-labels (list v)))
                      (r** (extend-var-env l (list v) r*))
                      (w** (make-binding-wrap (list #'id) l w*)))
                 (parse-opt req (cdr opt) rest kw body (cons v vars)
                            r** w** (cons (syntax->datum #'id) out)
                            (cons (expand #'i r* w* mod) inits))))))
           (rest
            (let* ((v (gen-var rest))
                   (l (gen-labels (list v)))
                   (r* (extend-var-env l (list v) r*))
                   (w* (make-binding-wrap (list rest) l w*)))
              (parse-kw req (if (pair? out) (reverse out) #f)
                        (syntax->datum rest)
                        (if (pair? kw) (cdr kw) kw)
                        body (cons v vars) r* w* 
                        (if (pair? kw) (car kw) #f)
                        '() inits)))
           (else
            (parse-kw req (if (pair? out) (reverse out) #f) #f
                      (if (pair? kw) (cdr kw) kw)
                      body vars r* w*
                      (if (pair? kw) (car kw) #f)
                      '() inits))))
        (define (parse-kw req opt rest kw body vars r* w* aok out inits)
          (cond
           ((pair? kw)
            (syntax-case (car kw) ()
              ((k id i)
               (let* ((v (gen-var #'id))
                      (l (gen-labels (list v)))
                      (r** (extend-var-env l (list v) r*))
                      (w** (make-binding-wrap (list #'id) l w*)))
                 (parse-kw req opt rest (cdr kw) body (cons v vars)
                           r** w** aok
                           (cons (list (syntax->datum #'k)
                                       (syntax->datum #'id)
                                       v)
                                 out)
                           (cons (expand #'i r* w* mod) inits))))))
           (else
            (parse-body req opt rest
                        (if (or aok (pair? out)) (cons aok (reverse out)) #f)
                        body (reverse vars) r* w* (reverse inits) '()))))
        (define (parse-body req opt rest kw body vars r* w* inits meta)
          (syntax-case body ()
            ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
             (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
                         (append meta 
                                 `((documentation
                                    . ,(syntax->datum #'docstring))))))
            ((#((k . v) ...) e1 e2 ...) 
             (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
                         (append meta (syntax->datum #'((k . v) ...)))))
            ((e1 e2 ...)
             (values meta req opt rest kw inits vars
                     (expand-body #'(e1 e2 ...) (source-wrap e w s mod)
                                  r* w* mod)))))

        (syntax-case clauses ()
          (() (values '() #f))
          (((args e1 e2 ...) (args* e1* e2* ...) ...)
           (call-with-values (lambda () (get-formals #'args))
             (lambda (req opt rest kw)
               (call-with-values (lambda ()
                                   (parse-req req opt rest kw #'(e1 e2 ...)))
                 (lambda (meta req opt rest kw inits vars body)
                   (call-with-values
                       (lambda ()
                         (expand-lambda-case e r w s mod get-formals
                                             #'((args* e1* e2* ...) ...)))
                     (lambda (meta* else*)
                       (values
                        (append meta meta*)
                        (build-lambda-case s req opt rest kw inits vars
                                           body else*))))))))))))

    ;; data

    ;; strips syntax-objects down to top-wrap
    ;;
    ;; since only the head of a list is annotated by the reader, not each pair
    ;; in the spine, we also check for pairs whose cars are annotated in case
    ;; we've been passed the cdr of an annotated list

    (define strip
      (lambda (x w)
        (if (top-marked? w)
            x
            (let f ((x x))
              (cond
               ((syntax-object? x)
                (strip (syntax-object-expression x) (syntax-object-wrap x)))
               ((pair? x)
                (let ((a (f (car x))) (d (f (cdr x))))
                  (if (and (eq? a (car x)) (eq? d (cdr x)))
                      x
                      (cons a d))))
               ((vector? x)
                (let ((old (vector->list x)))
                  (let ((new (map f old)))
                    ;; inlined and-map with two args
                    (let lp ((l1 old) (l2 new))
                      (if (null? l1)
                          x
                          (if (eq? (car l1) (car l2))
                              (lp (cdr l1) (cdr l2))
                              (list->vector new)))))))
               (else x))))))

    ;; lexical variables

    (define gen-var
      (lambda (id)
        (let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
          (build-lexical-var no-source id))))

    ;; appears to return a reversed list
    (define lambda-var-list
      (lambda (vars)
        (let lvl ((vars vars) (ls '()) (w empty-wrap))
          (cond
           ((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w #f) ls) w))
           ((id? vars) (cons (wrap vars w #f) ls))
           ((null? vars) ls)
           ((syntax-object? vars)
            (lvl (syntax-object-expression vars)
                 ls
                 (join-wraps w (syntax-object-wrap vars))))
           ;; include anything else to be caught by subsequent error
           ;; checking
           (else (cons vars ls))))))

    ;; core transformers

    (global-extend 'local-syntax 'letrec-syntax #t)
    (global-extend 'local-syntax 'let-syntax #f)

    (global-extend
     'core 'syntax-parameterize
     (lambda (e r w s mod)
       (syntax-case e ()
         ((_ ((var val) ...) e1 e2 ...)
          (valid-bound-ids? #'(var ...))
          (let ((names
                 (map (lambda (x)
                        (call-with-values
                            (lambda () (resolve-identifier x w r mod #f))
                          (lambda (type value mod)
                            (case type
                              ((displaced-lexical)
                               (syntax-violation 'syntax-parameterize
                                                 "identifier out of context"
                                                 e
                                                 (source-wrap x w s mod)))
                              ((syntax-parameter)
                               value)
                              (else
                               (syntax-violation 'syntax-parameterize
                                                 "invalid syntax parameter"
                                                 e
                                                 (source-wrap x w s mod)))))))
                      #'(var ...)))
                (bindings
                 (let ((trans-r (macros-only-env r)))
                   (map (lambda (x)
                          (make-binding
                           'syntax-parameter
                           (eval-local-transformer (expand x trans-r w mod) mod)))
                        #'(val ...)))))
            (expand-body #'(e1 e2 ...)
                         (source-wrap e w s mod)
                         (extend-env names bindings r)
                         w
                         mod)))
         (_ (syntax-violation 'syntax-parameterize "bad syntax"
                              (source-wrap e w s mod))))))

    (global-extend 'core 'quote
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ e) (build-data s (strip #'e w)))
                       (_ (syntax-violation 'quote "bad syntax"
                                            (source-wrap e w s mod))))))

    (global-extend
     'core 'syntax
     (let ()
       (define gen-syntax
         (lambda (src e r maps ellipsis? mod)
           (if (id? e)
               (call-with-values (lambda ()
                                   (resolve-identifier e empty-wrap r mod #f))
                 (lambda (type value mod)
                   (case type
                     ((syntax)
                      (call-with-values
                          (lambda () (gen-ref src (car value) (cdr value) maps))
                        (lambda (var maps)
                          (values `(ref ,var) maps))))
                     (else
                      (if (ellipsis? e r mod)
                          (syntax-violation 'syntax "misplaced ellipsis" src)
                          (values `(quote ,e) maps))))))
               (syntax-case e ()
                 ((dots e)
                  (ellipsis? #'dots r mod)
                  (gen-syntax src #'e r maps (lambda (e r mod) #f) mod))
                 ((x dots . y)
                  ;; this could be about a dozen lines of code, except that we
                  ;; choose to handle #'(x ... ...) forms
                  (ellipsis? #'dots r mod)
                  (let f ((y #'y)
                          (k (lambda (maps)
                               (call-with-values
                                   (lambda ()
                                     (gen-syntax src #'x r
                                                 (cons '() maps) ellipsis? mod))
                                 (lambda (x maps)
                                   (if (null? (car maps))
                                       (syntax-violation 'syntax "extra ellipsis"
                                                         src)
                                       (values (gen-map x (car maps))
                                               (cdr maps))))))))
                    (syntax-case y ()
                      ((dots . y)
                       (ellipsis? #'dots r mod)
                       (f #'y
                          (lambda (maps)
                            (call-with-values
                                (lambda () (k (cons '() maps)))
                              (lambda (x maps)
                                (if (null? (car maps))
                                    (syntax-violation 'syntax "extra ellipsis" src)
                                    (values (gen-mappend x (car maps))
                                            (cdr maps))))))))
                      (_ (call-with-values
                             (lambda () (gen-syntax src y r maps ellipsis? mod))
                           (lambda (y maps)
                             (call-with-values
                                 (lambda () (k maps))
                               (lambda (x maps)
                                 (values (gen-append x y) maps)))))))))
                 ((x . y)
                  (call-with-values
                      (lambda () (gen-syntax src #'x r maps ellipsis? mod))
                    (lambda (x maps)
                      (call-with-values
                          (lambda () (gen-syntax src #'y r maps ellipsis? mod))
                        (lambda (y maps) (values (gen-cons x y) maps))))))
                 (#(e1 e2 ...)
                  (call-with-values
                      (lambda ()
                        (gen-syntax src #'(e1 e2 ...) r maps ellipsis? mod))
                    (lambda (e maps) (values (gen-vector e) maps))))
                 (_ (values `(quote ,e) maps))))))

       (define gen-ref
         (lambda (src var level maps)
           (if (fx= level 0)
               (values var maps)
               (if (null? maps)
                   (syntax-violation 'syntax "missing ellipsis" src)
                   (call-with-values
                       (lambda () (gen-ref src var (fx- level 1) (cdr maps)))
                     (lambda (outer-var outer-maps)
                       (let ((b (assq outer-var (car maps))))
                         (if b
                             (values (cdr b) maps)
                             (let ((inner-var (gen-var 'tmp)))
                               (values inner-var
                                       (cons (cons (cons outer-var inner-var)
                                                   (car maps))
                                             outer-maps)))))))))))

       (define gen-mappend
         (lambda (e map-env)
           `(apply (primitive append) ,(gen-map e map-env))))

       (define gen-map
         (lambda (e map-env)
           (let ((formals (map cdr map-env))
                 (actuals (map (lambda (x) `(ref ,(car x))) map-env)))
             (cond
              ((eq? (car e) 'ref)
               ;; identity map equivalence:
               ;; (map (lambda (x) x) y) == y
               (car actuals))
              ((and-map
                (lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
                (cdr e))
               ;; eta map equivalence:
               ;; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
               `(map (primitive ,(car e))
                     ,@(map (let ((r (map cons formals actuals)))
                              (lambda (x) (cdr (assq (cadr x) r))))
                            (cdr e))))
              (else `(map (lambda ,formals ,e) ,@actuals))))))

       (define gen-cons
         (lambda (x y)
           (case (car y)
             ((quote)
              (if (eq? (car x) 'quote)
                  `(quote (,(cadr x) . ,(cadr y)))
                  (if (eq? (cadr y) '())
                      `(list ,x)
                      `(cons ,x ,y))))
             ((list) `(list ,x ,@(cdr y)))
             (else `(cons ,x ,y)))))

       (define gen-append
         (lambda (x y)
           (if (equal? y '(quote ()))
               x
               `(append ,x ,y))))

       (define gen-vector
         (lambda (x)
           (cond
            ((eq? (car x) 'list) `(vector ,@(cdr x)))
            ((eq? (car x) 'quote) `(quote #(,@(cadr x))))
            (else `(list->vector ,x)))))


       (define regen
         (lambda (x)
           (case (car x)
             ((ref) (build-lexical-reference 'value no-source (cadr x) (cadr x)))
             ((primitive) (build-primref no-source (cadr x)))
             ((quote) (build-data no-source (cadr x)))
             ((lambda)
              (if (list? (cadr x))
                  (build-simple-lambda no-source (cadr x) #f (cadr x) '() (regen (caddr x)))
                  (error "how did we get here" x)))
             (else (build-primcall no-source (car x) (map regen (cdr x)))))))

       (lambda (e r w s mod)
         (let ((e (source-wrap e w s mod)))
           (syntax-case e ()
             ((_ x)
              (call-with-values
                  (lambda () (gen-syntax e #'x r '() ellipsis? mod))
                (lambda (e maps) (regen e))))
             (_ (syntax-violation 'syntax "bad `syntax' form" e)))))))

    (global-extend 'core 'lambda
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ args e1 e2 ...)
                        (call-with-values (lambda () (lambda-formals #'args))
                          (lambda (req opt rest kw)
                            (let lp ((body #'(e1 e2 ...)) (meta '()))
                              (syntax-case body ()
                                ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
                                 (lp #'(e1 e2 ...)
                                     (append meta
                                             `((documentation
                                                . ,(syntax->datum #'docstring))))))
                                ((#((k . v) ...) e1 e2 ...) 
                                 (lp #'(e1 e2 ...)
                                     (append meta (syntax->datum #'((k . v) ...)))))
                                (_ (expand-simple-lambda e r w s mod req rest meta body)))))))
                       (_ (syntax-violation 'lambda "bad lambda" e)))))
  
    (global-extend 'core 'lambda*
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ args e1 e2 ...)
                        (call-with-values
                            (lambda ()
                              (expand-lambda-case e r w s mod
                                                  lambda*-formals #'((args e1 e2 ...))))
                          (lambda (meta lcase)
                            (build-case-lambda s meta lcase))))
                       (_ (syntax-violation 'lambda "bad lambda*" e)))))

    (global-extend 'core 'case-lambda
                   (lambda (e r w s mod)
                     (define (build-it meta clauses)
                       (call-with-values
                           (lambda ()
                             (expand-lambda-case e r w s mod
                                                 lambda-formals
                                                 clauses))
                         (lambda (meta* lcase)
                           (build-case-lambda s (append meta meta*) lcase))))
                     (syntax-case e ()
                       ((_ (args e1 e2 ...) ...)
                        (build-it '() #'((args e1 e2 ...) ...)))
                       ((_ docstring (args e1 e2 ...) ...)
                        (string? (syntax->datum #'docstring))
                        (build-it `((documentation
                                     . ,(syntax->datum #'docstring)))
                                  #'((args e1 e2 ...) ...)))
                       (_ (syntax-violation 'case-lambda "bad case-lambda" e)))))

    (global-extend 'core 'case-lambda*
                   (lambda (e r w s mod)
                     (define (build-it meta clauses)
                       (call-with-values
                           (lambda ()
                             (expand-lambda-case e r w s mod
                                                 lambda*-formals
                                                 clauses))
                         (lambda (meta* lcase)
                           (build-case-lambda s (append meta meta*) lcase))))
                     (syntax-case e ()
                       ((_ (args e1 e2 ...) ...)
                        (build-it '() #'((args e1 e2 ...) ...)))
                       ((_ docstring (args e1 e2 ...) ...)
                        (string? (syntax->datum #'docstring))
                        (build-it `((documentation
                                     . ,(syntax->datum #'docstring)))
                                  #'((args e1 e2 ...) ...)))
                       (_ (syntax-violation 'case-lambda "bad case-lambda*" e)))))

    (global-extend 'core 'with-ellipsis
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ dots e1 e2 ...)
                        (id? #'dots)
                        (let ((id (if (symbol? #'dots)
                                      '#{ $sc-ellipsis }#
                                      (make-syntax-object '#{ $sc-ellipsis }#
                                                          (syntax-object-wrap #'dots)
                                                          (syntax-object-module #'dots)))))
                          (let ((ids (list id))
                                (labels (list (gen-label)))
                                (bindings (list (make-binding 'ellipsis (source-wrap #'dots w s mod)))))
                            (let ((nw (make-binding-wrap ids labels w))
                                  (nr (extend-env labels bindings r)))
                              (expand-body #'(e1 e2 ...) (source-wrap e nw s mod) nr nw mod)))))
                       (_ (syntax-violation 'with-ellipsis "bad syntax"
                                            (source-wrap e w s mod))))))

    (global-extend 'core 'let
                   (let ()
                     (define (expand-let e r w s mod constructor ids vals exps)
                       (if (not (valid-bound-ids? ids))
                           (syntax-violation 'let "duplicate bound variable" e)
                           (let ((labels (gen-labels ids))
                                 (new-vars (map gen-var ids)))
                             (let ((nw (make-binding-wrap ids labels w))
                                   (nr (extend-var-env labels new-vars r)))
                               (constructor s
                                            (map syntax->datum ids)
                                            new-vars
                                            (map (lambda (x) (expand x r w mod)) vals)
                                            (expand-body exps (source-wrap e nw s mod)
                                                         nr nw mod))))))
                     (lambda (e r w s mod)
                       (syntax-case e ()
                         ((_ ((id val) ...) e1 e2 ...)
                          (and-map id? #'(id ...))
                          (expand-let e r w s mod
                                      build-let
                                      #'(id ...)
                                      #'(val ...)
                                      #'(e1 e2 ...)))
                         ((_ f ((id val) ...) e1 e2 ...)
                          (and (id? #'f) (and-map id? #'(id ...)))
                          (expand-let e r w s mod
                                      build-named-let
                                      #'(f id ...)
                                      #'(val ...)
                                      #'(e1 e2 ...)))
                         (_ (syntax-violation 'let "bad let" (source-wrap e w s mod)))))))


    (global-extend 'core 'letrec
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ ((id val) ...) e1 e2 ...)
                        (and-map id? #'(id ...))
                        (let ((ids #'(id ...)))
                          (if (not (valid-bound-ids? ids))
                              (syntax-violation 'letrec "duplicate bound variable" e)
                              (let ((labels (gen-labels ids))
                                    (new-vars (map gen-var ids)))
                                (let ((w (make-binding-wrap ids labels w))
                                      (r (extend-var-env labels new-vars r)))
                                  (build-letrec s #f
                                                (map syntax->datum ids)
                                                new-vars
                                                (map (lambda (x) (expand x r w mod)) #'(val ...))
                                                (expand-body #'(e1 e2 ...) 
                                                             (source-wrap e w s mod) r w mod)))))))
                       (_ (syntax-violation 'letrec "bad letrec" (source-wrap e w s mod))))))


    (global-extend 'core 'letrec*
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ ((id val) ...) e1 e2 ...)
                        (and-map id? #'(id ...))
                        (let ((ids #'(id ...)))
                          (if (not (valid-bound-ids? ids))
                              (syntax-violation 'letrec* "duplicate bound variable" e)
                              (let ((labels (gen-labels ids))
                                    (new-vars (map gen-var ids)))
                                (let ((w (make-binding-wrap ids labels w))
                                      (r (extend-var-env labels new-vars r)))
                                  (build-letrec s #t
                                                (map syntax->datum ids)
                                                new-vars
                                                (map (lambda (x) (expand x r w mod)) #'(val ...))
                                                (expand-body #'(e1 e2 ...) 
                                                             (source-wrap e w s mod) r w mod)))))))
                       (_ (syntax-violation 'letrec* "bad letrec*" (source-wrap e w s mod))))))


    (global-extend
     'core 'set!
     (lambda (e r w s mod)
       (syntax-case e ()
         ((_ id val)
          (id? #'id)
          (call-with-values
              (lambda () (resolve-identifier #'id w r mod #t))
            (lambda (type value id-mod)
              (case type
                ((lexical)
                 (build-lexical-assignment s (syntax->datum #'id) value
                                           (expand #'val r w mod)))
                ((global)
                 (build-global-assignment s value (expand #'val r w mod) id-mod))
                ((macro)
                 (if (procedure-property value 'variable-transformer)
                     ;; As syntax-type does, call expand-macro with
                     ;; the mod of the expression. Hmm.
                     (expand (expand-macro value e r w s #f mod) r empty-wrap mod)
                     (syntax-violation 'set! "not a variable transformer"
                                       (wrap e w mod)
                                       (wrap #'id w id-mod))))
                ((displaced-lexical)
                 (syntax-violation 'set! "identifier out of context"
                                   (wrap #'id w mod)))
                (else
                 (syntax-violation 'set! "bad set!" (source-wrap e w s mod)))))))
         ((_ (head tail ...) val)
          (call-with-values
              (lambda () (syntax-type #'head r empty-wrap no-source #f mod #t))
            (lambda (type value ee* ee ww ss modmod)
              (case type
                ((module-ref)
                 (let ((val (expand #'val r w mod)))
                   (call-with-values (lambda () (value #'(head tail ...) r w mod))
                     (lambda (e r w s* mod)
                       (syntax-case e ()
                         (e (id? #'e)
                            (build-global-assignment s (syntax->datum #'e)
                                                     val mod)))))))
                (else
                 (build-call s
                             (expand #'(setter head) r w mod)
                             (map (lambda (e) (expand e r w mod))
                                  #'(tail ... val))))))))
         (_ (syntax-violation 'set! "bad set!" (source-wrap e w s mod))))))

    (global-extend 'module-ref '@
                   (lambda (e r w mod)
                     (syntax-case e ()
                       ((_ (mod ...) id)
                        (and (and-map id? #'(mod ...)) (id? #'id))
                        ;; Strip the wrap from the identifier and return top-wrap
                        ;; so that the identifier will not be captured by lexicals.
                        (values (syntax->datum #'id) r top-wrap #f
                                (syntax->datum
                                 #'(public mod ...)))))))

    (global-extend 'module-ref '@@
                   (lambda (e r w mod)
                     (define remodulate
                       (lambda (x mod)
                         (cond ((pair? x)
                                (cons (remodulate (car x) mod)
                                      (remodulate (cdr x) mod)))
                               ((syntax-object? x)
                                (make-syntax-object
                                 (remodulate (syntax-object-expression x) mod)
                                 (syntax-object-wrap x)
                                 ;; hither the remodulation
                                 mod))
                               ((vector? x)
                                (let* ((n (vector-length x)) (v (make-vector n)))
                                  (do ((i 0 (fx+ i 1)))
                                      ((fx= i n) v)
                                    (vector-set! v i (remodulate (vector-ref x i) mod)))))
                               (else x))))
                     (syntax-case e (@@ primitive)
                       ((_ primitive id)
                        (and (id? #'id)
                             (equal? (cdr (if (syntax-object? #'id)
                                              (syntax-object-module #'id)
                                              mod))
                                     '(guile)))
                        ;; Strip the wrap from the identifier and return top-wrap
                        ;; so that the identifier will not be captured by lexicals.
                        (values (syntax->datum #'id) r top-wrap #f '(primitive)))
                       ((_ (mod ...) id)
                        (and (and-map id? #'(mod ...)) (id? #'id))
                        ;; Strip the wrap from the identifier and return top-wrap
                        ;; so that the identifier will not be captured by lexicals.
                        (values (syntax->datum #'id) r top-wrap #f
                                (syntax->datum
                                 #'(private mod ...))))
                       ((_ @@ (mod ...) exp)
                        (and-map id? #'(mod ...))
                        ;; This is a special syntax used to support R6RS library forms.
                        ;; Unlike the syntax above, the last item is not restricted to
                        ;; be a single identifier, and the syntax objects are kept
                        ;; intact, with only their module changed.
                        (let ((mod (syntax->datum #'(private mod ...))))
                          (values (remodulate #'exp mod)
                                  r w (source-annotation #'exp)
                                  mod))))))
  
    (global-extend 'core 'if
                   (lambda (e r w s mod)
                     (syntax-case e ()
                       ((_ test then)
                        (build-conditional
                         s
                         (expand #'test r w mod)
                         (expand #'then r w mod)
                         (build-void no-source)))
                       ((_ test then else)
                        (build-conditional
                         s
                         (expand #'test r w mod)
                         (expand #'then r w mod)
                         (expand #'else r w mod))))))

    (global-extend 'begin 'begin '())

    (global-extend 'define 'define '())

    (global-extend 'define-syntax 'define-syntax '())
    (global-extend 'define-syntax-parameter 'define-syntax-parameter '())

    (global-extend 'eval-when 'eval-when '())

    (global-extend 'core 'syntax-case
                   (let ()
                     (define convert-pattern
                       ;; accepts pattern & keys
                       ;; returns $sc-dispatch pattern & ids
                       (lambda (pattern keys ellipsis?)
                         (define cvt*
                           (lambda (p* n ids)
                             (syntax-case p* ()
                               ((x . y)
                                (call-with-values
                                     (lambda () (cvt* #'y n ids))
                                   (lambda (y ids)
                                     (call-with-values
                                         (lambda () (cvt #'x n ids))
                                       (lambda (x ids)
                                         (values (cons x y) ids))))))
                               (_ (cvt p* n ids)))))
                         
                         (define (v-reverse x)
                           (let loop ((r '()) (x x))
                             (if (not (pair? x))
                                 (values r x)
                                 (loop (cons (car x) r) (cdr x)))))

                         (define cvt
                           (lambda (p n ids)
                             (if (id? p)
                                 (cond
                                  ((bound-id-member? p keys)
                                   (values (vector 'free-id p) ids))
                                  ((free-id=? p #'_)
                                   (values '_ ids))
                                  (else
                                   (values 'any (cons (cons p n) ids))))
                                 (syntax-case p ()
                                   ((x dots)
                                    (ellipsis? (syntax dots))
                                    (call-with-values
                                        (lambda () (cvt (syntax x) (fx+ n 1) ids))
                                      (lambda (p ids)
                                        (values (if (eq? p 'any) 'each-any (vector 'each p))
                                                ids))))
                                   ((x dots . ys)
                                    (ellipsis? (syntax dots))
                                    (call-with-values
                                        (lambda () (cvt* (syntax ys) n ids))
                                      (lambda (ys ids)
                                        (call-with-values
                                            (lambda () (cvt (syntax x) (+ n 1) ids))
                                          (lambda (x ids)
                                            (call-with-values
                                                (lambda () (v-reverse ys))
                                              (lambda (ys e)
                                                (values `#(each+ ,x ,ys ,e) 
                                                        ids))))))))
                                   ((x . y)
                                    (call-with-values
                                        (lambda () (cvt (syntax y) n ids))
                                      (lambda (y ids)
                                        (call-with-values
                                            (lambda () (cvt (syntax x) n ids))
                                          (lambda (x ids)
                                            (values (cons x y) ids))))))
                                   (() (values '() ids))
                                   (#(x ...)
                                    (call-with-values
                                        (lambda () (cvt (syntax (x ...)) n ids))
                                      (lambda (p ids) (values (vector 'vector p) ids))))
                                   (x (values (vector 'atom (strip p empty-wrap)) ids))))))
                         (cvt pattern 0 '())))

                     (define build-dispatch-call
                       (lambda (pvars exp y r mod)
                         (let ((ids (map car pvars)) (levels (map cdr pvars)))
                           (let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
                             (build-primcall
                              no-source
                              'apply
                              (list (build-simple-lambda no-source (map syntax->datum ids) #f new-vars '()
                                                         (expand exp
                                                              (extend-env
                                                               labels
                                                               (map (lambda (var level)
                                                                      (make-binding 'syntax `(,var . ,level)))
                                                                    new-vars
                                                                    (map cdr pvars))
                                                               r)
                                                              (make-binding-wrap ids labels empty-wrap)
                                                              mod))
                                    y))))))

                     (define gen-clause
                       (lambda (x keys clauses r pat fender exp mod)
                         (call-with-values
                             (lambda () (convert-pattern pat keys (lambda (e) (ellipsis? e r mod))))
                           (lambda (p pvars)
                             (cond
                              ((not (and-map (lambda (x) (not (ellipsis? (car x) r mod))) pvars))
                               (syntax-violation 'syntax-case "misplaced ellipsis" pat))
                              ((not (distinct-bound-ids? (map car pvars)))
                               (syntax-violation 'syntax-case "duplicate pattern variable" pat))
                              (else
                               (let ((y (gen-var 'tmp)))
                                 ;; fat finger binding and references to temp variable y
                                 (build-call no-source
                                             (build-simple-lambda no-source (list 'tmp) #f (list y) '()
                                                                  (let ((y (build-lexical-reference 'value no-source
                                                                                                    'tmp y)))
                                                                    (build-conditional no-source
                                                                                       (syntax-case fender ()
                                                                                         (#t y)
                                                                                         (_ (build-conditional no-source
                                                                                                               y
                                                                                                               (build-dispatch-call pvars fender y r mod)
                                                                                                               (build-data no-source #f))))
                                                                                       (build-dispatch-call pvars exp y r mod)
                                                                                       (gen-syntax-case x keys clauses r mod))))
                                             (list (if (eq? p 'any)
                                                       (build-primcall no-source 'list (list x))
                                                       (build-primcall no-source '$sc-dispatch
                                                                       (list x (build-data no-source p)))))))))))))

                     (define gen-syntax-case
                       (lambda (x keys clauses r mod)
                         (if (null? clauses)
                             (build-primcall no-source 'syntax-violation
                                             (list (build-data no-source #f)
                                                   (build-data no-source
                                                               "source expression failed to match any pattern")
                                                   x))
                             (syntax-case (car clauses) ()
                               ((pat exp)
                                (if (and (id? #'pat)
                                         (and-map (lambda (x) (not (free-id=? #'pat x)))
                                                  (cons #'(... ...) keys)))
                                    (if (free-id=? #'pat #'_)
                                        (expand #'exp r empty-wrap mod)
                                        (let ((labels (list (gen-label)))
                                              (var (gen-var #'pat)))
                                          (build-call no-source
                                                      (build-simple-lambda
                                                       no-source (list (syntax->datum #'pat)) #f (list var)
                                                       '()
                                                       (expand #'exp
                                                            (extend-env labels
                                                                        (list (make-binding 'syntax `(,var . 0)))
                                                                        r)
                                                            (make-binding-wrap #'(pat)
                                                                               labels empty-wrap)
                                                            mod))
                                                      (list x))))
                                    (gen-clause x keys (cdr clauses) r
                                                #'pat #t #'exp mod)))
                               ((pat fender exp)
                                (gen-clause x keys (cdr clauses) r
                                            #'pat #'fender #'exp mod))
                               (_ (syntax-violation 'syntax-case "invalid clause"
                                                    (car clauses)))))))

                     (lambda (e r w s mod)
                       (let ((e (source-wrap e w s mod)))
                         (syntax-case e ()
                           ((_ val (key ...) m ...)
                            (if (and-map (lambda (x) (and (id? x) (not (ellipsis? x r mod))))
                                         #'(key ...))
                                (let ((x (gen-var 'tmp)))
                                  ;; fat finger binding and references to temp variable x
                                  (build-call s
                                              (build-simple-lambda no-source (list 'tmp) #f (list x) '()
                                                                   (gen-syntax-case (build-lexical-reference 'value no-source
                                                                                                             'tmp x)
                                                                                    #'(key ...) #'(m ...)
                                                                                    r
                                                                                    mod))
                                              (list (expand #'val r empty-wrap mod))))
                                (syntax-violation 'syntax-case "invalid literals list" e))))))))

    ;; The portable macroexpand seeds expand-top's mode m with 'e (for
    ;; evaluating) and esew (which stands for "eval syntax expanders
    ;; when") with '(eval).  In Chez Scheme, m is set to 'c instead of e
    ;; if we are compiling a file, and esew is set to
    ;; (eval-syntactic-expanders-when), which defaults to the list
    ;; '(compile load eval).  This means that, by default, top-level
    ;; syntactic definitions are evaluated immediately after they are
    ;; expanded, and the expanded definitions are also residualized into
    ;; the object file if we are compiling a file.
    (set! macroexpand
          (lambda* (x #:optional (m 'e) (esew '(eval)))
            (expand-top-sequence (list x) null-env top-wrap #f m esew
                                 (cons 'hygiene (module-name (current-module))))))

    (set! identifier?
          (lambda (x)
            (nonsymbol-id? x)))

    (set! datum->syntax
          (lambda (id datum)
            (make-syntax-object datum (syntax-object-wrap id)
                                (syntax-object-module id))))

    (set! syntax->datum
          ;; accepts any object, since syntax objects may consist partially
          ;; or entirely of unwrapped, nonsymbolic data
          (lambda (x)
            (strip x empty-wrap)))

    (set! syntax-source
          (lambda (x) (source-annotation x)))

    (set! generate-temporaries
          (lambda (ls)
            (arg-check list? ls 'generate-temporaries)
            (let ((mod (cons 'hygiene (module-name (current-module)))))
              (map (lambda (x)
                     (wrap (module-gensym "t") top-wrap mod))
                   ls))))

    (set! free-identifier=?
          (lambda (x y)
            (arg-check nonsymbol-id? x 'free-identifier=?)
            (arg-check nonsymbol-id? y 'free-identifier=?)
            (free-id=? x y)))

    (set! bound-identifier=?
          (lambda (x y)
            (arg-check nonsymbol-id? x 'bound-identifier=?)
            (arg-check nonsymbol-id? y 'bound-identifier=?)
            (bound-id=? x y)))

    (set! syntax-violation
          (lambda* (who message form #:optional subform)
            (arg-check (lambda (x) (or (not x) (string? x) (symbol? x)))
                       who 'syntax-violation)
            (arg-check string? message 'syntax-violation)
            (throw 'syntax-error who message
                   (or (source-annotation subform)
                       (source-annotation form))
                   (strip form empty-wrap)
                   (and subform (strip subform empty-wrap)))))

    (let ()
      (define (%syntax-module id)
        (arg-check nonsymbol-id? id 'syntax-module)
        (let ((mod (syntax-object-module id)))
          (and (not (equal? mod '(primitive)))
               (cdr mod))))

      (define* (syntax-local-binding id #:key (resolve-syntax-parameters? #t))
        (arg-check nonsymbol-id? id 'syntax-local-binding)
        (with-transformer-environment
         (lambda (e r w s rib mod)
           (define (strip-anti-mark w)
             (let ((ms (wrap-marks w)) (s (wrap-subst w)))
               (if (and (pair? ms) (eq? (car ms) the-anti-mark))
                   ;; output is from original text
                   (make-wrap (cdr ms) (if rib (cons rib (cdr s)) (cdr s)))
                   ;; output introduced by macro
                   (make-wrap ms (if rib (cons rib s) s)))))
           (call-with-values (lambda ()
                               (resolve-identifier
                                (syntax-object-expression id)
                                (strip-anti-mark (syntax-object-wrap id))
                                r
                                (syntax-object-module id)
                                resolve-syntax-parameters?))
             (lambda (type value mod)
               (case type
                 ((lexical) (values 'lexical value))
                 ((macro) (values 'macro value))
                 ((syntax-parameter) (values 'syntax-parameter value))
                 ((syntax) (values 'pattern-variable value))
                 ((displaced-lexical) (values 'displaced-lexical #f))
                 ((global)
                  (if (equal? mod '(primitive))
                      (values 'primitive value)
                      (values 'global (cons value (cdr mod)))))
                 ((ellipsis)
                  (values 'ellipsis
                          (make-syntax-object (syntax-object-expression value)
                                              (anti-mark (syntax-object-wrap value))
                                              (syntax-object-module value))))
                 (else (values 'other #f))))))))

      (define (syntax-locally-bound-identifiers id)
        (arg-check nonsymbol-id? id 'syntax-locally-bound-identifiers)
        (locally-bound-identifiers (syntax-object-wrap id)
                                   (syntax-object-module id)))

      ;; Using define! instead of set! to avoid warnings at
      ;; compile-time, after the variables are stolen away into (system
      ;; syntax).  See the end of boot-9.scm.
      ;;
      (define! '%syntax-module %syntax-module)
      (define! 'syntax-local-binding syntax-local-binding)
      (define! 'syntax-locally-bound-identifiers syntax-locally-bound-identifiers))
    
    ;; $sc-dispatch expects an expression and a pattern.  If the expression
    ;; matches the pattern a list of the matching expressions for each
    ;; "any" is returned.  Otherwise, #f is returned.  (This use of #f will
    ;; not work on r4rs implementations that violate the ieee requirement
    ;; that #f and () be distinct.)

    ;; The expression is matched with the pattern as follows:

    ;; pattern:                           matches:
    ;;   ()                                 empty list
    ;;   any                                anything
    ;;   (<pattern>1 . <pattern>2)          (<pattern>1 . <pattern>2)
    ;;   each-any                           (any*)
    ;;   #(free-id <key>)                   <key> with free-identifier=?
    ;;   #(each <pattern>)                  (<pattern>*)
    ;;   #(each+ p1 (p2_1 ... p2_n) p3)      (p1* (p2_n ... p2_1) . p3)
    ;;   #(vector <pattern>)                (list->vector <pattern>)
    ;;   #(atom <object>)                   <object> with "equal?"

    ;; Vector cops out to pair under assumption that vectors are rare.  If
    ;; not, should convert to:
    ;;   #(vector <pattern>*)               #(<pattern>*)

    (let ()

      (define match-each
        (lambda (e p w mod)
          (cond
           ((pair? e)
            (let ((first (match (car e) p w '() mod)))
              (and first
                   (let ((rest (match-each (cdr e) p w mod)))
                     (and rest (cons first rest))))))
           ((null? e) '())
           ((syntax-object? e)
            (match-each (syntax-object-expression e)
                        p
                        (join-wraps w (syntax-object-wrap e))
                        (syntax-object-module e)))
           (else #f))))

      (define match-each+
        (lambda (e x-pat y-pat z-pat w r mod)
          (let f ((e e) (w w))
            (cond
             ((pair? e)
              (call-with-values (lambda () (f (cdr e) w))
                (lambda (xr* y-pat r)
                  (if r
                      (if (null? y-pat)
                          (let ((xr (match (car e) x-pat w '() mod)))
                            (if xr
                                (values (cons xr xr*) y-pat r)
                                (values #f #f #f)))
                          (values
                           '()
                           (cdr y-pat)
                           (match (car e) (car y-pat) w r mod)))
                      (values #f #f #f)))))
             ((syntax-object? e)
              (f (syntax-object-expression e)
                 (join-wraps w (syntax-object-wrap e))))
             (else
              (values '() y-pat (match e z-pat w r mod)))))))

      (define match-each-any
        (lambda (e w mod)
          (cond
           ((pair? e)
            (let ((l (match-each-any (cdr e) w mod)))
              (and l (cons (wrap (car e) w mod) l))))
           ((null? e) '())
           ((syntax-object? e)
            (match-each-any (syntax-object-expression e)
                            (join-wraps w (syntax-object-wrap e))
                            mod))
           (else #f))))

      (define match-empty
        (lambda (p r)
          (cond
           ((null? p) r)
           ((eq? p '_) r)
           ((eq? p 'any) (cons '() r))
           ((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
           ((eq? p 'each-any) (cons '() r))
           (else
            (case (vector-ref p 0)
              ((each) (match-empty (vector-ref p 1) r))
              ((each+) (match-empty (vector-ref p 1)
                                    (match-empty
                                     (reverse (vector-ref p 2))
                                     (match-empty (vector-ref p 3) r))))
              ((free-id atom) r)
              ((vector) (match-empty (vector-ref p 1) r)))))))

      (define combine
        (lambda (r* r)
          (if (null? (car r*))
              r
              (cons (map car r*) (combine (map cdr r*) r)))))

      (define match*
        (lambda (e p w r mod)
          (cond
           ((null? p) (and (null? e) r))
           ((pair? p)
            (and (pair? e) (match (car e) (car p) w
                             (match (cdr e) (cdr p) w r mod)
                             mod)))
           ((eq? p 'each-any)
            (let ((l (match-each-any e w mod))) (and l (cons l r))))
           (else
            (case (vector-ref p 0)
              ((each)
               (if (null? e)
                   (match-empty (vector-ref p 1) r)
                   (let ((l (match-each e (vector-ref p 1) w mod)))
                     (and l
                          (let collect ((l l))
                            (if (null? (car l))
                                r
                                (cons (map car l) (collect (map cdr l)))))))))
              ((each+)
               (call-with-values
                   (lambda ()
                     (match-each+ e (vector-ref p 1) (vector-ref p 2) (vector-ref p 3) w r mod))
                 (lambda (xr* y-pat r)
                   (and r
                        (null? y-pat)
                        (if (null? xr*)
                            (match-empty (vector-ref p 1) r)
                            (combine xr* r))))))
              ((free-id) (and (id? e) (free-id=? (wrap e w mod) (vector-ref p 1)) r))
              ((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
              ((vector)
               (and (vector? e)
                    (match (vector->list e) (vector-ref p 1) w r mod))))))))

      (define match
        (lambda (e p w r mod)
          (cond
           ((not r) #f)
           ((eq? p '_) r)
           ((eq? p 'any) (cons (wrap e w mod) r))
           ((syntax-object? e)
            (match*
             (syntax-object-expression e)
             p
             (join-wraps w (syntax-object-wrap e))
             r
             (syntax-object-module e)))
           (else (match* e p w r mod)))))

      (set! $sc-dispatch
            (lambda (e p)
              (cond
               ((eq? p 'any) (list e))
               ((eq? p '_) '())
               ((syntax-object? e)
                (match* (syntax-object-expression e)
                        p (syntax-object-wrap e) '() (syntax-object-module e)))
               (else (match* e p empty-wrap '() #f))))))))


(define-syntax with-syntax
   (lambda (x)
      (syntax-case x ()
         ((_ () e1 e2 ...)
          #'(let () e1 e2 ...))
         ((_ ((out in)) e1 e2 ...)
          #'(syntax-case in ()
              (out (let () e1 e2 ...))))
         ((_ ((out in) ...) e1 e2 ...)
          #'(syntax-case (list in ...) ()
              ((out ...) (let () e1 e2 ...)))))))

(define-syntax syntax-error
  (lambda (x)
    (syntax-case x ()
      ;; Extended internal syntax which provides the original form
      ;; as the first operand, for improved error reporting.
      ((_ (keyword . operands) message arg ...)
       (string? (syntax->datum #'message))
       (syntax-violation (syntax->datum #'keyword)
                         (string-join (cons (syntax->datum #'message)
                                            (map (lambda (x)
                                                   (object->string
                                                    (syntax->datum x)))
                                                 #'(arg ...))))
                         (and (syntax->datum #'keyword)
                              #'(keyword . operands))))
      ;; Standard R7RS syntax
      ((_ message arg ...)
       (string? (syntax->datum #'message))
       #'(syntax-error (#f) message arg ...)))))

(define-syntax syntax-rules
  (lambda (xx)
    (define (expand-clause clause)
      ;; Convert a 'syntax-rules' clause into a 'syntax-case' clause.
      (syntax-case clause (syntax-error)
        ;; If the template is a 'syntax-error' form, use the extended
        ;; internal syntax, which adds the original form as the first
        ;; operand for improved error reporting.
        (((keyword . pattern) (syntax-error message arg ...))
         (string? (syntax->datum #'message))
         #'((dummy . pattern) #'(syntax-error (dummy . pattern) message arg ...)))
        ;; Normal case
        (((keyword . pattern) template)
         #'((dummy . pattern) #'template))))
    (define (expand-syntax-rules dots keys docstrings clauses)
      (with-syntax
          (((k ...) keys)
           ((docstring ...) docstrings)
           ((((keyword . pattern) template) ...) clauses)
           ((clause ...) (map expand-clause clauses)))
        (with-syntax
            ((form #'(lambda (x)
                       docstring ...        ; optional docstring
                       #((macro-type . syntax-rules)
                         (patterns pattern ...)) ; embed patterns as procedure metadata
                       (syntax-case x (k ...)
                         clause ...))))
          (if dots
              (with-syntax ((dots dots))
                #'(with-ellipsis dots form))
              #'form))))
    (syntax-case xx ()
      ((_ (k ...) ((keyword . pattern) template) ...)
       (expand-syntax-rules #f #'(k ...) #'() #'(((keyword . pattern) template) ...)))
      ((_ (k ...) docstring ((keyword . pattern) template) ...)
       (string? (syntax->datum #'docstring))
       (expand-syntax-rules #f #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...)))
      ((_ dots (k ...) ((keyword . pattern) template) ...)
       (identifier? #'dots)
       (expand-syntax-rules #'dots #'(k ...) #'() #'(((keyword . pattern) template) ...)))
      ((_ dots (k ...) docstring ((keyword . pattern) template) ...)
       (and (identifier? #'dots) (string? (syntax->datum #'docstring)))
       (expand-syntax-rules #'dots #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...))))))

(define-syntax define-syntax-rule
  (lambda (x)
    (syntax-case x ()
      ((_ (name . pattern) template)
       #'(define-syntax name
           (syntax-rules ()
             ((_ . pattern) template))))
      ((_ (name . pattern) docstring template)
       (string? (syntax->datum #'docstring))
       #'(define-syntax name
           (syntax-rules ()
             docstring
             ((_ . pattern) template)))))))

(define-syntax let*
  (lambda (x)
    (syntax-case x ()
      ((let* ((x v) ...) e1 e2 ...)
       (and-map identifier? #'(x ...))
       (let f ((bindings #'((x v)  ...)))
         (if (null? bindings)
             #'(let () e1 e2 ...)
             (with-syntax ((body (f (cdr bindings)))
                           (binding (car bindings)))
               #'(let (binding) body))))))))

(define-syntax quasiquote
  (let ()
    (define (quasi p lev)
      (syntax-case p (unquote quasiquote)
        ((unquote p)
         (if (= lev 0)
             #'("value" p)
             (quasicons #'("quote" unquote) (quasi #'(p) (- lev 1)))))
        ((quasiquote p) (quasicons #'("quote" quasiquote) (quasi #'(p) (+ lev 1))))
        ((p . q)
         (syntax-case #'p (unquote unquote-splicing)
           ((unquote p ...)
            (if (= lev 0)
                (quasilist* #'(("value" p) ...) (quasi #'q lev))
                (quasicons
                 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
                 (quasi #'q lev))))
           ((unquote-splicing p ...)
            (if (= lev 0)
                (quasiappend #'(("value" p) ...) (quasi #'q lev))
                (quasicons
                 (quasicons #'("quote" unquote-splicing) (quasi #'(p ...) (- lev 1)))
                 (quasi #'q lev))))
           (_ (quasicons (quasi #'p lev) (quasi #'q lev)))))
        (#(x ...) (quasivector (vquasi #'(x ...) lev)))
        (p #'("quote" p))))
    (define (vquasi p lev)
      (syntax-case p ()
        ((p . q)
         (syntax-case #'p (unquote unquote-splicing)
           ((unquote p ...)
            (if (= lev 0)
                (quasilist* #'(("value" p) ...) (vquasi #'q lev))
                (quasicons
                 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
                 (vquasi #'q lev))))
           ((unquote-splicing p ...)
            (if (= lev 0)
                (quasiappend #'(("value" p) ...) (vquasi #'q lev))
                (quasicons
                 (quasicons
                  #'("quote" unquote-splicing)
                  (quasi #'(p ...) (- lev 1)))
                 (vquasi #'q lev))))
           (_ (quasicons (quasi #'p lev) (vquasi #'q lev)))))
        (() #'("quote" ()))))
    (define (quasicons x y)
      (with-syntax ((x x) (y y))
        (syntax-case #'y ()
          (("quote" dy)
           (syntax-case #'x ()
             (("quote" dx) #'("quote" (dx . dy)))
             (_ (if (null? #'dy) #'("list" x) #'("list*" x y)))))
          (("list" . stuff) #'("list" x . stuff))
          (("list*" . stuff) #'("list*" x . stuff))
          (_ #'("list*" x y)))))
    (define (quasiappend x y)
      (syntax-case y ()
        (("quote" ())
         (cond
          ((null? x) #'("quote" ()))
          ((null? (cdr x)) (car x))
          (else (with-syntax (((p ...) x)) #'("append" p ...)))))
        (_
         (cond
          ((null? x) y)
          (else (with-syntax (((p ...) x) (y y)) #'("append" p ... y)))))))
    (define (quasilist* x y)
      (let f ((x x))
        (if (null? x)
            y
            (quasicons (car x) (f (cdr x))))))
    (define (quasivector x)
      (syntax-case x ()
        (("quote" (x ...)) #'("quote" #(x ...)))
        (_
         (let f ((y x) (k (lambda (ls) #`("vector" #,@ls))))
           (syntax-case y ()
             (("quote" (y ...)) (k #'(("quote" y) ...)))
             (("list" y ...) (k #'(y ...)))
             (("list*" y ... z) (f #'z (lambda (ls) (k (append #'(y ...) ls)))))
             (else #`("list->vector" #,x)))))))
    (define (emit x)
      (syntax-case x ()
        (("quote" x) #''x)
        (("list" x ...) #`(list #,@(map emit #'(x ...))))
        ;; could emit list* for 3+ arguments if implementation supports
        ;; list*
        (("list*" x ... y)
         (let f ((x* #'(x ...)))
           (if (null? x*)
               (emit #'y)
               #`(cons #,(emit (car x*)) #,(f (cdr x*))))))
        (("append" x ...) #`(append #,@(map emit #'(x ...))))
        (("vector" x ...) #`(vector #,@(map emit #'(x ...))))
        (("list->vector" x) #`(list->vector #,(emit #'x)))
        (("value" x) #'x)))
    (lambda (x)
      (syntax-case x ()
        ;; convert to intermediate language, combining introduced (but
        ;; not unquoted source) quote expressions where possible and
        ;; choosing optimal construction code otherwise, then emit
        ;; Scheme code corresponding to the intermediate language forms.
        ((_ e) (emit (quasi #'e 0))))))) 

(define-syntax include
  (lambda (x)
    (define read-file
      (lambda (fn dir k)
        (let* ((p (open-input-file
                   (cond ((absolute-file-name? fn)
                          fn)
                         (dir
                          (in-vicinity dir fn))
                         (else
                          (syntax-violation
                           'include
                           "relative file name only allowed when the include form is in a file"
                           x)))))
               (enc (file-encoding p)))

          ;; Choose the input encoding deterministically.
          (set-port-encoding! p (or enc "UTF-8"))

          (let f ((x (read p))
                  (result '()))
            (if (eof-object? x)
                (begin
                  (close-port p)
                  (reverse result))
                (f (read p)
                   (cons (datum->syntax k x) result)))))))
    (let* ((src (syntax-source x))
           (file (and src (assq-ref src 'filename)))
           (dir (and (string? file) (dirname file))))
      (syntax-case x ()
        ((k filename)
         (let ((fn (syntax->datum #'filename)))
           (with-syntax (((exp ...) (read-file fn dir #'filename)))
             #'(begin exp ...))))))))

(define-syntax include-from-path
  (lambda (x)
    (syntax-case x ()
      ((k filename)
       (let ((fn (syntax->datum #'filename)))
         (with-syntax ((fn (datum->syntax
                            #'filename
                            (canonicalize-path
                             (or (%search-load-path fn)
                                 (syntax-violation 'include-from-path
                                                   "file not found in path"
                                                   x #'filename))))))
           #'(include fn)))))))

(define-syntax unquote
  (lambda (x)
    (syntax-violation 'unquote
                      "expression not valid outside of quasiquote"
                      x)))

(define-syntax unquote-splicing
  (lambda (x)
    (syntax-violation 'unquote-splicing
                      "expression not valid outside of quasiquote"
                      x)))

(define (make-variable-transformer proc)
  (if (procedure? proc)
      (let ((trans (lambda (x)
                     #((macro-type . variable-transformer))
                     (proc x))))
        (set-procedure-property! trans 'variable-transformer #t)
        trans)
      (error "variable transformer not a procedure" proc)))

(define-syntax identifier-syntax
  (lambda (xx)
    (syntax-case xx (set!)
      ((_ e)
       #'(lambda (x)
           #((macro-type . identifier-syntax))
           (syntax-case x ()
             (id
              (identifier? #'id)
              #'e)
             ((_ x (... ...))
              #'(e x (... ...))))))
      ((_ (id exp1) ((set! var val) exp2))
       (and (identifier? #'id) (identifier? #'var))
       #'(make-variable-transformer
          (lambda (x)
            #((macro-type . variable-transformer))
            (syntax-case x (set!)
              ((set! var val) #'exp2)
              ((id x (... ...)) #'(exp1 x (... ...)))
              (id (identifier? #'id) #'exp1))))))))

(define-syntax define*
  (lambda (x)
    (syntax-case x ()
      ((_ (id . args) b0 b1 ...)
       #'(define id (lambda* args b0 b1 ...)))
      ((_ id val) (identifier? #'id)
       #'(define id val)))))