1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
/* Copyright (C) 2011 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include "libguile/_scm.h"
#include "libguile/hash.h"
#include "libguile/eval.h"
#include "libguile/ports.h"
#include "libguile/bdw-gc.h"
#include "libguile/validate.h"
#include "libguile/weak-set.h"
/* Weak Sets
This file implements weak sets. One example of a weak set is the
symbol table, where you want all instances of the `foo' symbol to map
to one object. So when you load a file and it wants a symbol with
the characters "foo", you one up in the table, using custom hash and
equality predicates. Only if one is not found will you bother to
cons one up and intern it.
Another use case for weak sets is the set of open ports. Guile needs
to be able to flush them all when the process exits, but the set
shouldn't prevent the GC from collecting the port (and thus closing
it).
Weak sets are implemented using an open-addressed hash table.
Basically this means that there is an array of entries, and the item
is expected to be found the slot corresponding to its hash code,
modulo the length of the array.
Collisions are handled using linear probing with the Robin Hood
technique. See Pedro Celis' paper, "Robin Hood Hashing":
http://www.cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
The vector of entries is allocated as an "atomic" piece of memory, so
that the GC doesn't trace it. When an item is added to the set, a
disappearing link is registered to its location. If the item is
collected, then that link will be zeroed out.
An entry is not just an item, though; the hash code is also stored in
the entry. We munge hash codes so that they are never 0. In this
way we can detect removed entries (key of zero but nonzero hash
code), and can then reshuffle elements as needed to maintain the
robin hood ordering.
Compared to buckets-and-chains hash tables, open addressing has the
advantage that it is very cache-friendly. It also uses less memory.
Implementation-wise, there are two things to note.
1. We assume that hash codes are evenly distributed across the
range of unsigned longs. The actual hash code stored in the
entry is left-shifted by 1 bit (losing 1 bit of hash precision),
and then or'd with 1. In this way we ensure that the hash field
of an occupied entry is nonzero. To map to an index, we
right-shift the hash by one, divide by the size, and take the
remainder.
2. Since the "keys" (the objects in the set) are stored in an
atomic region with disappearing links, they need to be accessed
with the GC alloc lock. `copy_weak_entry' will do that for
you. The hash code itself can be read outside the lock,
though.
*/
typedef struct {
unsigned long hash;
scm_t_bits key;
} scm_t_weak_entry;
struct weak_entry_data {
scm_t_weak_entry *in;
scm_t_weak_entry *out;
};
static void*
do_copy_weak_entry (void *data)
{
struct weak_entry_data *e = data;
e->out->hash = e->in->hash;
e->out->key = e->in->key;
return NULL;
}
static void
copy_weak_entry (scm_t_weak_entry *src, scm_t_weak_entry *dst)
{
struct weak_entry_data data;
data.in = src;
data.out = dst;
GC_call_with_alloc_lock (do_copy_weak_entry, &data);
}
typedef struct {
scm_t_weak_entry *entries; /* the data */
scm_i_pthread_mutex_t lock; /* the lock */
unsigned long size; /* total number of slots. */
unsigned long n_items; /* number of items in set */
unsigned long lower; /* when to shrink */
unsigned long upper; /* when to grow */
int size_index; /* index into hashset_size */
int min_size_index; /* minimum size_index */
} scm_t_weak_set;
#define SCM_WEAK_SET_P(x) (!SCM_IMP (x) && SCM_TYP7(x) == scm_tc7_weak_set)
#define SCM_VALIDATE_WEAK_SET(pos, arg) \
SCM_MAKE_VALIDATE_MSG (pos, arg, WEAK_SET_P, "weak-set")
#define SCM_WEAK_SET(x) ((scm_t_weak_set *) SCM_CELL_WORD_1 (x))
static unsigned long
hash_to_index (unsigned long hash, unsigned long size)
{
return (hash >> 1) % size;
}
static unsigned long
entry_distance (unsigned long hash, unsigned long k, unsigned long size)
{
unsigned long origin = hash_to_index (hash, size);
if (k >= origin)
return k - origin;
else
/* The other key was displaced and wrapped around. */
return size - origin + k;
}
static void
move_weak_entry (scm_t_weak_entry *from, scm_t_weak_entry *to)
{
if (from->hash)
{
scm_t_weak_entry copy;
copy_weak_entry (from, ©);
to->hash = copy.hash;
to->key = copy.key;
if (copy.key && SCM_NIMP (SCM_PACK (copy.key)))
{
GC_unregister_disappearing_link ((GC_PTR) &from->key);
SCM_I_REGISTER_DISAPPEARING_LINK ((GC_PTR) &to->key,
(GC_PTR) to->key);
}
}
else
{
to->hash = 0;
to->key = 0;
}
}
static void
rob_from_rich (scm_t_weak_set *set, unsigned long k)
{
unsigned long empty, size;
size = set->size;
/* If we are to free up slot K in the set, we need room to do so. */
assert (set->n_items < size);
empty = k;
do
empty = (empty + 1) % size;
/* Here we access key outside the lock. Is this a problem? At first
glance, I wouldn't think so. */
while (set->entries[empty].key);
do
{
unsigned long last = empty ? (empty - 1) : (size - 1);
move_weak_entry (&set->entries[last], &set->entries[empty]);
empty = last;
}
while (empty != k);
/* Just for sanity. */
set->entries[empty].hash = 0;
set->entries[empty].key = 0;
}
static void
give_to_poor (scm_t_weak_set *set, unsigned long k)
{
/* Slot K was just freed up; possibly shuffle others down. */
unsigned long size = set->size;
while (1)
{
unsigned long next = (k + 1) % size;
unsigned long hash;
scm_t_weak_entry copy;
hash = set->entries[next].hash;
if (!hash || hash_to_index (hash, size) == next)
break;
copy_weak_entry (&set->entries[next], ©);
if (!copy.key)
/* Lost weak reference. */
{
give_to_poor (set, next);
set->n_items--;
continue;
}
move_weak_entry (&set->entries[next], &set->entries[k]);
k = next;
}
/* We have shuffled down any entries that should be shuffled down; now
free the end. */
set->entries[k].hash = 0;
set->entries[k].key = 0;
}
/* Growing or shrinking is triggered when the load factor
*
* L = N / S (N: number of items in set, S: bucket vector length)
*
* passes an upper limit of 0.9 or a lower limit of 0.2.
*
* The implementation stores the upper and lower number of items which
* trigger a resize in the hashset object.
*
* Possible hash set sizes (primes) are stored in the array
* hashset_size.
*/
static unsigned long hashset_size[] = {
31, 61, 113, 223, 443, 883, 1759, 3517, 7027, 14051, 28099, 56197, 112363,
224717, 449419, 898823, 1797641, 3595271, 7190537, 14381041, 28762081,
57524111, 115048217, 230096423
};
#define HASHSET_SIZE_N (sizeof(hashset_size)/sizeof(unsigned long))
static void
resize_set (scm_t_weak_set *set)
{
scm_t_weak_entry *old_entries, *new_entries;
int i;
unsigned long old_size, new_size, old_k;
old_entries = set->entries;
old_size = set->size;
if (set->n_items < set->lower)
{
/* rehashing is not triggered when i <= min_size */
i = set->size_index;
do
--i;
while (i > set->min_size_index
&& set->n_items < hashset_size[i] / 4);
}
else
{
i = set->size_index + 1;
if (i >= HASHSET_SIZE_N)
/* The biggest size currently is 230096423, which for a 32-bit
machine will occupy 1.5GB of memory at a load of 80%. There
is probably something better to do here, but if you have a
weak map of that size, you are hosed in any case. */
abort ();
}
new_size = hashset_size[i];
new_entries = scm_gc_malloc_pointerless (new_size * sizeof(scm_t_weak_entry),
"weak set");
memset (new_entries, 0, new_size * sizeof(scm_t_weak_entry));
set->size_index = i;
set->size = new_size;
if (i <= set->min_size_index)
set->lower = 0;
else
set->lower = new_size / 5;
set->upper = 9 * new_size / 10;
set->n_items = 0;
set->entries = new_entries;
for (old_k = 0; old_k < old_size; old_k++)
{
scm_t_weak_entry copy;
unsigned long new_k, distance;
if (!old_entries[old_k].hash)
continue;
copy_weak_entry (&old_entries[old_k], ©);
if (!copy.key)
continue;
new_k = hash_to_index (copy.hash, new_size);
for (distance = 0; ; distance++, new_k = (new_k + 1) % new_size)
{
unsigned long other_hash = new_entries[new_k].hash;
if (!other_hash)
/* Found an empty entry. */
break;
/* Displace the entry if our distance is less, otherwise keep
looking. */
if (entry_distance (other_hash, new_k, new_size) < distance)
{
rob_from_rich (set, new_k);
break;
}
}
set->n_items++;
new_entries[new_k].hash = copy.hash;
new_entries[new_k].key = copy.key;
if (SCM_NIMP (SCM_PACK (copy.key)))
SCM_I_REGISTER_DISAPPEARING_LINK ((GC_PTR) &new_entries[new_k].key,
(GC_PTR) new_entries[new_k].key);
}
}
/* Run after GC via do_vacuum_weak_set, this function runs over the
whole table, removing lost weak references, reshuffling the set as it
goes. It might resize the set if it reaps enough entries. */
static void
vacuum_weak_set (scm_t_weak_set *set)
{
scm_t_weak_entry *entries = set->entries;
unsigned long size = set->size;
unsigned long k;
for (k = 0; k < size; k++)
{
unsigned long hash = entries[k].hash;
if (hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
}
}
}
if (set->n_items < set->lower)
resize_set (set);
}
static SCM
weak_set_lookup (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure,
SCM dflt)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; distance < size; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Not found. */
return dflt;
if (hash == other_hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found. */
return SCM_PACK (copy.key);
}
/* If the entry's distance is less, our key is not in the set. */
if (entry_distance (other_hash, k, size) < distance)
return dflt;
}
/* If we got here, then we were unfortunate enough to loop through the
whole set. Shouldn't happen, but hey. */
return dflt;
}
static SCM
weak_set_add_x (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure,
SCM obj)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; ; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Found an empty entry. */
break;
if (other_hash == hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found an entry with this key. */
return SCM_PACK (copy.key);
}
if (set->n_items > set->upper)
/* Full set, time to resize. */
{
resize_set (set);
return weak_set_add_x (set, hash >> 1, pred, closure, obj);
}
/* Displace the entry if our distance is less, otherwise keep
looking. */
if (entry_distance (other_hash, k, size) < distance)
{
rob_from_rich (set, k);
break;
}
}
set->n_items++;
entries[k].hash = hash;
entries[k].key = SCM_UNPACK (obj);
if (SCM_NIMP (obj))
SCM_I_REGISTER_DISAPPEARING_LINK ((GC_PTR) &entries[k].key,
(GC_PTR) SCM2PTR (obj));
return obj;
}
static void
weak_set_remove_x (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; distance < size; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Not found. */
return;
if (other_hash == hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found an entry with this key. */
{
entries[k].hash = 0;
entries[k].key = 0;
if (SCM_NIMP (SCM_PACK (copy.key)))
GC_unregister_disappearing_link ((GC_PTR) &entries[k].key);
if (--set->n_items < set->lower)
resize_set (set);
else
give_to_poor (set, k);
return;
}
}
/* If the entry's distance is less, our key is not in the set. */
if (entry_distance (other_hash, k, size) < distance)
return;
}
}
static SCM
make_weak_set (unsigned long k)
{
scm_t_weak_set *set;
int i = 0, n = k ? k : 31;
while (i + 1 < HASHSET_SIZE_N && n > hashset_size[i])
++i;
n = hashset_size[i];
set = scm_gc_malloc (sizeof (*set), "weak-set");
set->entries = scm_gc_malloc_pointerless (n * sizeof(scm_t_weak_entry),
"weak-set");
memset (set->entries, 0, n * sizeof(scm_t_weak_entry));
set->n_items = 0;
set->size = n;
set->lower = 0;
set->upper = 9 * n / 10;
set->size_index = i;
set->min_size_index = i;
scm_i_pthread_mutex_init (&set->lock, NULL);
return scm_cell (scm_tc7_weak_set, (scm_t_bits)set);
}
void
scm_i_weak_set_print (SCM exp, SCM port, scm_print_state *pstate)
{
scm_puts ("#<", port);
scm_puts ("weak-set ", port);
scm_uintprint (SCM_WEAK_SET (exp)->n_items, 10, port);
scm_putc ('/', port);
scm_uintprint (SCM_WEAK_SET (exp)->size, 10, port);
scm_puts (">", port);
}
static void
do_vacuum_weak_set (SCM set)
{
scm_t_weak_set *s;
s = SCM_WEAK_SET (set);
if (scm_i_pthread_mutex_trylock (&s->lock) == 0)
{
vacuum_weak_set (s);
scm_i_pthread_mutex_unlock (&s->lock);
}
return;
}
/* The before-gc C hook only runs if GC_set_start_callback is available,
so if not, fall back on a finalizer-based implementation. */
static int
weak_gc_callback (void **weak)
{
void *val = weak[0];
void (*callback) (SCM) = weak[1];
if (!val)
return 0;
callback (PTR2SCM (val));
return 1;
}
#ifdef HAVE_GC_SET_START_CALLBACK
static void*
weak_gc_hook (void *hook_data, void *fn_data, void *data)
{
if (!weak_gc_callback (fn_data))
scm_c_hook_remove (&scm_before_gc_c_hook, weak_gc_hook, fn_data);
return NULL;
}
#else
static void
weak_gc_finalizer (void *ptr, void *data)
{
if (weak_gc_callback (ptr))
GC_REGISTER_FINALIZER_NO_ORDER (ptr, weak_gc_finalizer, data, NULL, NULL);
}
#endif
static void
scm_c_register_weak_gc_callback (SCM obj, void (*callback) (SCM))
{
void **weak = GC_MALLOC_ATOMIC (sizeof (void*) * 2);
weak[0] = SCM2PTR (obj);
weak[1] = (void*)callback;
GC_GENERAL_REGISTER_DISAPPEARING_LINK (weak, SCM2PTR (obj));
#ifdef HAVE_GC_SET_START_CALLBACK
scm_c_hook_add (&scm_after_gc_c_hook, weak_gc_hook, weak, 0);
#else
GC_REGISTER_FINALIZER_NO_ORDER (weak, weak_gc_finalizer, NULL, NULL, NULL);
#endif
}
SCM
scm_c_make_weak_set (unsigned long k)
{
SCM ret;
ret = make_weak_set (k);
scm_c_register_weak_gc_callback (ret, do_vacuum_weak_set);
return ret;
}
SCM
scm_weak_set_p (SCM obj)
{
return scm_from_bool (SCM_WEAK_SET_P (obj));
}
SCM
scm_weak_set_clear_x (SCM set)
{
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
memset (s->entries, 0, sizeof (scm_t_weak_entry) * s->size);
s->n_items = 0;
scm_i_pthread_mutex_unlock (&s->lock);
return SCM_UNSPECIFIED;
}
SCM
scm_c_weak_set_lookup (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure, SCM dflt)
{
SCM ret;
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
ret = weak_set_lookup (s, raw_hash, pred, closure, dflt);
scm_i_pthread_mutex_unlock (&s->lock);
return ret;
}
SCM
scm_c_weak_set_add_x (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure, SCM obj)
{
SCM ret;
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
ret = weak_set_add_x (s, raw_hash, pred, closure, obj);
scm_i_pthread_mutex_unlock (&s->lock);
return ret;
}
void
scm_c_weak_set_remove_x (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure)
{
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
weak_set_remove_x (s, raw_hash, pred, closure);
scm_i_pthread_mutex_unlock (&s->lock);
}
static int
eq_predicate (SCM x, void *closure)
{
return scm_is_eq (x, PTR2SCM (closure));
}
SCM
scm_weak_set_add_x (SCM set, SCM obj)
{
return scm_c_weak_set_add_x (set, scm_ihashq (obj, -1),
eq_predicate, SCM2PTR (obj), obj);
}
SCM
scm_weak_set_remove_x (SCM set, SCM obj)
{
scm_c_weak_set_remove_x (set, scm_ihashq (obj, -1),
eq_predicate, SCM2PTR (obj));
return SCM_UNSPECIFIED;
}
SCM
scm_c_weak_set_fold (scm_t_set_fold_fn proc, void *closure,
SCM init, SCM set)
{
scm_t_weak_set *s;
scm_t_weak_entry *entries;
unsigned long k, size;
s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
size = s->size;
entries = s->entries;
for (k = 0; k < size; k++)
{
if (entries[k].hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (copy.key)
{
/* Release set lock while we call the function. */
scm_i_pthread_mutex_unlock (&s->lock);
init = proc (closure, SCM_PACK (copy.key), init);
scm_i_pthread_mutex_lock (&s->lock);
}
}
}
scm_i_pthread_mutex_unlock (&s->lock);
return init;
}
static SCM
fold_trampoline (void *closure, SCM item, SCM init)
{
return scm_call_2 (PTR2SCM (closure), item, init);
}
SCM
scm_weak_set_fold (SCM proc, SCM init, SCM set)
{
return scm_c_weak_set_fold (fold_trampoline, SCM2PTR (proc), init, set);
}
static SCM
for_each_trampoline (void *closure, SCM item, SCM seed)
{
scm_call_1 (PTR2SCM (closure), item);
return seed;
}
SCM
scm_weak_set_for_each (SCM proc, SCM set)
{
scm_c_weak_set_fold (for_each_trampoline, SCM2PTR (proc), SCM_BOOL_F, set);
return SCM_UNSPECIFIED;
}
static SCM
map_trampoline (void *closure, SCM item, SCM seed)
{
return scm_cons (scm_call_1 (PTR2SCM (closure), item), seed);
}
SCM
scm_weak_set_map_to_list (SCM proc, SCM set)
{
return scm_c_weak_set_fold (map_trampoline, SCM2PTR (proc), SCM_EOL, set);
}
void
scm_init_weak_set ()
{
#include "libguile/weak-set.x"
}
/*
Local Variables:
c-file-style: "gnu"
End:
*/
|