1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
|
/* Copyright (C) 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004,
* 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
* 2014 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "libguile/bdw-gc.h"
#include <gc/gc_mark.h>
#include "libguile/_scm.h"
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#ifdef HAVE_STRING_H
#include <string.h> /* for memset used by FD_ZERO on Solaris 10 */
#endif
#if HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#if HAVE_PTHREAD_NP_H
# include <pthread_np.h>
#endif
#include <sys/select.h>
#include <assert.h>
#include <fcntl.h>
#include <nproc.h>
#include "libguile/validate.h"
#include "libguile/root.h"
#include "libguile/eval.h"
#include "libguile/async.h"
#include "libguile/ports.h"
#include "libguile/threads.h"
#include "libguile/dynwind.h"
#include "libguile/iselect.h"
#include "libguile/fluids.h"
#include "libguile/continuations.h"
#include "libguile/gc.h"
#include "libguile/gc-inline.h"
#include "libguile/init.h"
#include "libguile/scmsigs.h"
#include "libguile/strings.h"
#include "libguile/vm.h"
#include <full-read.h>
/* The GC "kind" for threads that allow them to mark their VM
stacks. */
static int thread_gc_kind;
static struct GC_ms_entry *
thread_mark (GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
struct GC_ms_entry *mark_stack_limit, GC_word env)
{
int word;
const struct scm_i_thread *t = (struct scm_i_thread *) addr;
if (SCM_UNPACK (t->handle) == 0)
/* T must be on the free-list; ignore. (See warning in
gc_mark.h.) */
return mark_stack_ptr;
/* Mark T. We could be more precise, but it doesn't matter. */
for (word = 0; word * sizeof (*addr) < sizeof (*t); word++)
mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr[word],
mark_stack_ptr, mark_stack_limit,
NULL);
/* The pointerless freelists are threaded through their first word,
but GC doesn't know to trace them (as they are pointerless), so we
need to do that here. See the comments at the top of libgc's
gc_inline.h. */
if (t->pointerless_freelists)
{
size_t n;
for (n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
{
void *chain = t->pointerless_freelists[n];
if (chain)
{
/* The first link is already marked by the freelist vector,
so we just have to mark the tail. */
while ((chain = *(void **)chain))
mark_stack_ptr = GC_mark_and_push (chain, mark_stack_ptr,
mark_stack_limit, NULL);
}
}
}
if (t->vp)
mark_stack_ptr = scm_i_vm_mark_stack (t->vp, mark_stack_ptr,
mark_stack_limit);
return mark_stack_ptr;
}
static void
to_timespec (SCM t, scm_t_timespec *waittime)
{
if (scm_is_pair (t))
{
waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
}
else
{
double time = scm_to_double (t);
double sec = scm_c_truncate (time);
waittime->tv_sec = (long) sec;
waittime->tv_nsec = (long) ((time - sec) * 1000000000);
}
}
/*** Queues */
/* Note: We annotate with "GC-robust" assignments whose purpose is to avoid
the risk of false references leading to unbounded retained space as
described in "Bounding Space Usage of Conservative Garbage Collectors",
H.J. Boehm, 2001. */
/* Make an empty queue data structure.
*/
static SCM
make_queue ()
{
return scm_cons (SCM_EOL, SCM_EOL);
}
/* Put T at the back of Q and return a handle that can be used with
remqueue to remove T from Q again.
*/
static SCM
enqueue (SCM q, SCM t)
{
SCM c = scm_cons (t, SCM_EOL);
SCM_CRITICAL_SECTION_START;
if (scm_is_null (SCM_CDR (q)))
SCM_SETCDR (q, c);
else
SCM_SETCDR (SCM_CAR (q), c);
SCM_SETCAR (q, c);
SCM_CRITICAL_SECTION_END;
return c;
}
/* Remove the element that the handle C refers to from the queue Q. C
must have been returned from a call to enqueue. The return value
is zero when the element referred to by C has already been removed.
Otherwise, 1 is returned.
*/
static int
remqueue (SCM q, SCM c)
{
SCM p, prev = q;
SCM_CRITICAL_SECTION_START;
for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
{
if (scm_is_eq (p, c))
{
if (scm_is_eq (c, SCM_CAR (q)))
SCM_SETCAR (q, scm_is_eq (prev, q) ? SCM_EOL : prev);
SCM_SETCDR (prev, SCM_CDR (c));
/* GC-robust */
SCM_SETCDR (c, SCM_EOL);
SCM_CRITICAL_SECTION_END;
return 1;
}
prev = p;
}
SCM_CRITICAL_SECTION_END;
return 0;
}
/* Remove the front-most element from the queue Q and return it.
Return SCM_BOOL_F when Q is empty.
*/
static SCM
dequeue (SCM q)
{
SCM c;
SCM_CRITICAL_SECTION_START;
c = SCM_CDR (q);
if (scm_is_null (c))
{
SCM_CRITICAL_SECTION_END;
return SCM_BOOL_F;
}
else
{
SCM_SETCDR (q, SCM_CDR (c));
if (scm_is_null (SCM_CDR (q)))
SCM_SETCAR (q, SCM_EOL);
SCM_CRITICAL_SECTION_END;
/* GC-robust */
SCM_SETCDR (c, SCM_EOL);
return SCM_CAR (c);
}
}
/*** Thread smob routines */
static int
thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
/* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
struct. A cast like "(unsigned long) t->pthread" is a syntax error in
the struct case, hence we go via a union, and extract according to the
size of pthread_t. */
union {
scm_i_pthread_t p;
unsigned short us;
unsigned int ui;
unsigned long ul;
scm_t_uintmax um;
} u;
scm_i_thread *t = SCM_I_THREAD_DATA (exp);
scm_i_pthread_t p = t->pthread;
scm_t_uintmax id;
u.p = p;
if (sizeof (p) == sizeof (unsigned short))
id = u.us;
else if (sizeof (p) == sizeof (unsigned int))
id = u.ui;
else if (sizeof (p) == sizeof (unsigned long))
id = u.ul;
else
id = u.um;
scm_puts_unlocked ("#<thread ", port);
scm_uintprint (id, 10, port);
scm_puts_unlocked (" (", port);
scm_uintprint ((scm_t_bits)t, 16, port);
scm_puts_unlocked (")>", port);
return 1;
}
/*** Blocking on queues. */
/* See also scm_i_queue_async_cell for how such a block is
interrputed.
*/
/* Put the current thread on QUEUE and go to sleep, waiting for it to
be woken up by a call to 'unblock_from_queue', or to be
interrupted. Upon return of this function, the current thread is
no longer on QUEUE, even when the sleep has been interrupted.
The caller of block_self must hold MUTEX. It will be atomically
unlocked while sleeping, just as with scm_i_pthread_cond_wait.
SLEEP_OBJECT is an arbitrary SCM value that is kept alive as long
as MUTEX is needed.
When WAITTIME is not NULL, the sleep will be aborted at that time.
The return value of block_self is an errno value. It will be zero
when the sleep has been successfully completed by a call to
unblock_from_queue, EINTR when it has been interrupted by the
delivery of a system async, and ETIMEDOUT when the timeout has
expired.
The system asyncs themselves are not executed by block_self.
*/
static int
block_self (SCM queue, SCM sleep_object, scm_i_pthread_mutex_t *mutex,
const scm_t_timespec *waittime)
{
scm_i_thread *t = SCM_I_CURRENT_THREAD;
SCM q_handle;
int err;
if (scm_i_setup_sleep (t, sleep_object, mutex, -1))
err = EINTR;
else
{
t->block_asyncs++;
q_handle = enqueue (queue, t->handle);
if (waittime == NULL)
err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
else
err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);
/* When we are still on QUEUE, we have been interrupted. We
report this only when no other error (such as a timeout) has
happened above.
*/
if (remqueue (queue, q_handle) && err == 0)
err = EINTR;
t->block_asyncs--;
scm_i_reset_sleep (t);
}
return err;
}
/* Wake up the first thread on QUEUE, if any. The awoken thread is
returned, or #f if the queue was empty.
*/
static SCM
unblock_from_queue (SCM queue)
{
SCM thread = dequeue (queue);
if (scm_is_true (thread))
scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
return thread;
}
/* Getting into and out of guile mode.
*/
/* Key used to attach a cleanup handler to a given thread. Also, if
thread-local storage is unavailable, this key is used to retrieve the
current thread with `pthread_getspecific ()'. */
scm_i_pthread_key_t scm_i_thread_key;
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
/* When thread-local storage (TLS) is available, a pointer to the
current-thread object is kept in TLS. Note that storing the thread-object
itself in TLS (rather than a pointer to some malloc'd memory) is not
possible since thread objects may live longer than the actual thread they
represent. */
SCM_THREAD_LOCAL scm_i_thread *scm_i_current_thread = NULL;
#endif /* SCM_HAVE_THREAD_STORAGE_CLASS */
static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
static scm_i_thread *all_threads = NULL;
static int thread_count;
static SCM scm_i_default_dynamic_state;
/* Run when a fluid is collected. */
void
scm_i_reset_fluid (size_t n)
{
scm_i_thread *t;
scm_i_pthread_mutex_lock (&thread_admin_mutex);
for (t = all_threads; t; t = t->next_thread)
if (SCM_I_DYNAMIC_STATE_P (t->dynamic_state))
{
SCM v = SCM_I_DYNAMIC_STATE_FLUIDS (t->dynamic_state);
if (n < SCM_SIMPLE_VECTOR_LENGTH (v))
SCM_SIMPLE_VECTOR_SET (v, n, SCM_UNDEFINED);
}
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
}
/* Perform first stage of thread initialisation, in non-guile mode.
*/
static void
guilify_self_1 (struct GC_stack_base *base)
{
scm_i_thread t;
/* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value
before allocating anything in this thread, because allocation could
cause GC to run, and GC could cause finalizers, which could invoke
Scheme functions, which need the current thread to be set. */
t.pthread = scm_i_pthread_self ();
t.handle = SCM_BOOL_F;
t.result = SCM_BOOL_F;
t.cleanup_handler = SCM_BOOL_F;
t.mutexes = SCM_EOL;
t.held_mutex = NULL;
t.join_queue = SCM_EOL;
t.freelists = NULL;
t.pointerless_freelists = NULL;
t.dynamic_state = SCM_BOOL_F;
t.dynstack.base = NULL;
t.dynstack.top = NULL;
t.dynstack.limit = NULL;
t.active_asyncs = SCM_EOL;
t.block_asyncs = 1;
t.pending_asyncs = 1;
t.critical_section_level = 0;
t.base = base->mem_base;
#ifdef __ia64__
t.register_backing_store_base = base->reg_base;
#endif
t.continuation_root = SCM_EOL;
t.continuation_base = t.base;
scm_i_pthread_cond_init (&t.sleep_cond, NULL);
t.sleep_mutex = NULL;
t.sleep_object = SCM_BOOL_F;
t.sleep_fd = -1;
t.vp = NULL;
if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0)
/* FIXME: Error conditions during the initialization phase are handled
gracelessly since public functions such as `scm_init_guile ()'
currently have type `void'. */
abort ();
scm_i_pthread_mutex_init (&t.admin_mutex, NULL);
t.canceled = 0;
t.exited = 0;
t.guile_mode = 0;
/* The switcheroo. */
{
scm_i_thread *t_ptr = &t;
GC_disable ();
t_ptr = GC_generic_malloc (sizeof (*t_ptr), thread_gc_kind);
memcpy (t_ptr, &t, sizeof t);
scm_i_pthread_setspecific (scm_i_thread_key, t_ptr);
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
/* Cache the current thread in TLS for faster lookup. */
scm_i_current_thread = t_ptr;
#endif
scm_i_pthread_mutex_lock (&thread_admin_mutex);
t_ptr->next_thread = all_threads;
all_threads = t_ptr;
thread_count++;
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
GC_enable ();
}
}
/* Perform second stage of thread initialisation, in guile mode.
*/
static void
guilify_self_2 (SCM parent)
{
scm_i_thread *t = SCM_I_CURRENT_THREAD;
t->guile_mode = 1;
SCM_NEWSMOB (t->handle, scm_tc16_thread, t);
t->continuation_root = scm_cons (t->handle, SCM_EOL);
t->continuation_base = t->base;
{
size_t size = SCM_INLINE_GC_FREELIST_COUNT * sizeof (void *);
t->freelists = scm_gc_malloc (size, "freelists");
t->pointerless_freelists = scm_gc_malloc (size, "atomic freelists");
}
if (scm_is_true (parent))
t->dynamic_state = scm_make_dynamic_state (parent);
else
t->dynamic_state = scm_i_make_initial_dynamic_state ();
t->dynstack.base = scm_gc_malloc (16 * sizeof (scm_t_bits), "dynstack");
t->dynstack.limit = t->dynstack.base + 16;
t->dynstack.top = t->dynstack.base + SCM_DYNSTACK_HEADER_LEN;
t->join_queue = make_queue ();
t->block_asyncs = 0;
/* See note in finalizers.c:queue_finalizer_async(). */
GC_invoke_finalizers ();
}
/*** Fat mutexes */
/* We implement our own mutex type since we want them to be 'fair', we
want to do fancy things while waiting for them (like running
asyncs) and we might want to add things that are nice for
debugging.
*/
typedef struct {
scm_i_pthread_mutex_t lock;
SCM owner;
int level; /* how much the owner owns us. <= 1 for non-recursive mutexes */
int recursive; /* allow recursive locking? */
int unchecked_unlock; /* is it an error to unlock an unlocked mutex? */
int allow_external_unlock; /* is it an error to unlock a mutex that is not
owned by the current thread? */
SCM waiting; /* the threads waiting for this mutex. */
} fat_mutex;
#define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
#define SCM_MUTEX_DATA(x) ((fat_mutex *) SCM_SMOB_DATA (x))
static SCM
call_cleanup (void *data)
{
SCM *proc_p = data;
return scm_call_0 (*proc_p);
}
/* Perform thread tear-down, in guile mode.
*/
static void *
do_thread_exit (void *v)
{
scm_i_thread *t = (scm_i_thread *) v;
if (!scm_is_false (t->cleanup_handler))
{
SCM ptr = t->cleanup_handler;
t->cleanup_handler = SCM_BOOL_F;
t->result = scm_internal_catch (SCM_BOOL_T,
call_cleanup, &ptr,
scm_handle_by_message_noexit, NULL);
}
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
t->exited = 1;
close (t->sleep_pipe[0]);
close (t->sleep_pipe[1]);
while (scm_is_true (unblock_from_queue (t->join_queue)))
;
while (!scm_is_null (t->mutexes))
{
SCM mutex = scm_c_weak_vector_ref (scm_car (t->mutexes), 0);
if (scm_is_true (mutex))
{
fat_mutex *m = SCM_MUTEX_DATA (mutex);
scm_i_pthread_mutex_lock (&m->lock);
/* Check whether T owns MUTEX. This is usually the case, unless
T abandoned MUTEX; in that case, T is no longer its owner (see
`fat_mutex_lock') but MUTEX is still in `t->mutexes'. */
if (scm_is_eq (m->owner, t->handle))
unblock_from_queue (m->waiting);
scm_i_pthread_mutex_unlock (&m->lock);
}
t->mutexes = scm_cdr (t->mutexes);
}
scm_i_pthread_mutex_unlock (&t->admin_mutex);
return NULL;
}
static void *
do_thread_exit_trampoline (struct GC_stack_base *sb, void *v)
{
/* Won't hurt if we are already registered. */
#if SCM_USE_PTHREAD_THREADS
GC_register_my_thread (sb);
#endif
return scm_with_guile (do_thread_exit, v);
}
static void
on_thread_exit (void *v)
{
/* This handler is executed in non-guile mode. */
scm_i_thread *t = (scm_i_thread *) v, **tp;
/* If we were canceled, we were unable to clear `t->guile_mode', so do
it here. */
t->guile_mode = 0;
/* If this thread was cancelled while doing a cond wait, it will
still have a mutex locked, so we unlock it here. */
if (t->held_mutex)
{
scm_i_pthread_mutex_unlock (t->held_mutex);
t->held_mutex = NULL;
}
/* Reinstate the current thread for purposes of scm_with_guile
guile-mode cleanup handlers. Only really needed in the non-TLS
case but it doesn't hurt to be consistent. */
scm_i_pthread_setspecific (scm_i_thread_key, t);
/* Scheme-level thread finalizers and other cleanup needs to happen in
guile mode. */
GC_call_with_stack_base (do_thread_exit_trampoline, t);
/* Removing ourself from the list of all threads needs to happen in
non-guile mode since all SCM values on our stack become
unprotected once we are no longer in the list. */
scm_i_pthread_mutex_lock (&thread_admin_mutex);
for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
if (*tp == t)
{
*tp = t->next_thread;
/* GC-robust */
t->next_thread = NULL;
break;
}
thread_count--;
/* If there's only one other thread, it could be the signal delivery
thread, so we need to notify it to shut down by closing its read pipe.
If it's not the signal delivery thread, then closing the read pipe isn't
going to hurt. */
if (thread_count <= 1)
scm_i_close_signal_pipe ();
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
scm_i_pthread_setspecific (scm_i_thread_key, NULL);
if (t->vp)
{
scm_i_vm_free_stack (t->vp);
t->vp = NULL;
}
#if SCM_USE_PTHREAD_THREADS
GC_unregister_my_thread ();
#endif
}
static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;
static void
init_thread_key (void)
{
scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
}
/* Perform any initializations necessary to make the current thread
known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself,
if necessary.
BASE is the stack base to use with GC.
PARENT is the dynamic state to use as the parent, ot SCM_BOOL_F in
which case the default dynamic state is used.
Returns zero when the thread was known to guile already; otherwise
return 1.
Note that it could be the case that the thread was known
to Guile, but not in guile mode (because we are within a
scm_without_guile call). Check SCM_I_CURRENT_THREAD->guile_mode to
be sure. New threads are put into guile mode implicitly. */
static int
scm_i_init_thread_for_guile (struct GC_stack_base *base, SCM parent)
{
scm_i_pthread_once (&init_thread_key_once, init_thread_key);
if (SCM_I_CURRENT_THREAD)
{
/* Thread is already known to Guile.
*/
return 0;
}
else
{
/* This thread has not been guilified yet.
*/
scm_i_pthread_mutex_lock (&scm_i_init_mutex);
if (scm_initialized_p == 0)
{
/* First thread ever to enter Guile. Run the full
initialization.
*/
scm_i_init_guile (base);
#if SCM_USE_PTHREAD_THREADS
/* Allow other threads to come in later. */
GC_allow_register_threads ();
#endif
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
}
else
{
/* Guile is already initialized, but this thread enters it for
the first time. Only initialize this thread.
*/
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
/* Register this thread with libgc. */
#if SCM_USE_PTHREAD_THREADS
GC_register_my_thread (base);
#endif
guilify_self_1 (base);
guilify_self_2 (parent);
}
return 1;
}
}
void
scm_init_guile ()
{
struct GC_stack_base stack_base;
if (GC_get_stack_base (&stack_base) == GC_SUCCESS)
scm_i_init_thread_for_guile (&stack_base,
scm_i_default_dynamic_state);
else
{
fprintf (stderr, "Failed to get stack base for current thread.\n");
exit (EXIT_FAILURE);
}
}
struct with_guile_args
{
GC_fn_type func;
void *data;
SCM parent;
};
static void *
with_guile_trampoline (void *data)
{
struct with_guile_args *args = data;
return scm_c_with_continuation_barrier (args->func, args->data);
}
static void *
with_guile_and_parent (struct GC_stack_base *base, void *data)
{
void *res;
int new_thread;
scm_i_thread *t;
struct with_guile_args *args = data;
new_thread = scm_i_init_thread_for_guile (base, args->parent);
t = SCM_I_CURRENT_THREAD;
if (new_thread)
{
/* We are in Guile mode. */
assert (t->guile_mode);
res = scm_c_with_continuation_barrier (args->func, args->data);
/* Leave Guile mode. */
t->guile_mode = 0;
}
else if (t->guile_mode)
{
/* Already in Guile mode. */
res = scm_c_with_continuation_barrier (args->func, args->data);
}
else
{
/* We are not in Guile mode, either because we are not within a
scm_with_guile, or because we are within a scm_without_guile.
This call to scm_with_guile() could happen from anywhere on the
stack, and in particular lower on the stack than when it was
when this thread was first guilified. Thus, `base' must be
updated. */
#if SCM_STACK_GROWS_UP
if (SCM_STACK_PTR (base->mem_base) < t->base)
t->base = SCM_STACK_PTR (base->mem_base);
#else
if (SCM_STACK_PTR (base->mem_base) > t->base)
t->base = SCM_STACK_PTR (base->mem_base);
#endif
t->guile_mode = 1;
res = GC_call_with_gc_active (with_guile_trampoline, args);
t->guile_mode = 0;
}
return res;
}
static void *
scm_i_with_guile_and_parent (void *(*func)(void *), void *data, SCM parent)
{
struct with_guile_args args;
args.func = func;
args.data = data;
args.parent = parent;
return GC_call_with_stack_base (with_guile_and_parent, &args);
}
void *
scm_with_guile (void *(*func)(void *), void *data)
{
return scm_i_with_guile_and_parent (func, data,
scm_i_default_dynamic_state);
}
void *
scm_without_guile (void *(*func)(void *), void *data)
{
void *result;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
if (t->guile_mode)
{
SCM_I_CURRENT_THREAD->guile_mode = 0;
result = GC_do_blocking (func, data);
SCM_I_CURRENT_THREAD->guile_mode = 1;
}
else
/* Otherwise we're not in guile mode, so nothing to do. */
result = func (data);
return result;
}
/*** Thread creation */
typedef struct {
SCM parent;
SCM thunk;
SCM handler;
SCM thread;
scm_i_pthread_mutex_t mutex;
scm_i_pthread_cond_t cond;
} launch_data;
static void *
really_launch (void *d)
{
launch_data *data = (launch_data *)d;
SCM thunk = data->thunk, handler = data->handler;
scm_i_thread *t;
t = SCM_I_CURRENT_THREAD;
scm_i_scm_pthread_mutex_lock (&data->mutex);
data->thread = scm_current_thread ();
scm_i_pthread_cond_signal (&data->cond);
scm_i_pthread_mutex_unlock (&data->mutex);
if (SCM_UNBNDP (handler))
t->result = scm_call_0 (thunk);
else
t->result = scm_catch (SCM_BOOL_T, thunk, handler);
return 0;
}
static void *
launch_thread (void *d)
{
launch_data *data = (launch_data *)d;
scm_i_pthread_detach (scm_i_pthread_self ());
scm_i_with_guile_and_parent (really_launch, d, data->parent);
return NULL;
}
SCM_DEFINE (scm_call_with_new_thread, "call-with-new-thread", 1, 1, 0,
(SCM thunk, SCM handler),
"Call @code{thunk} in a new thread and with a new dynamic state,\n"
"returning a new thread object representing the thread. The procedure\n"
"@var{thunk} is called via @code{with-continuation-barrier}.\n"
"\n"
"When @var{handler} is specified, then @var{thunk} is called from\n"
"within a @code{catch} with tag @code{#t} that has @var{handler} as its\n"
"handler. This catch is established inside the continuation barrier.\n"
"\n"
"Once @var{thunk} or @var{handler} returns, the return value is made\n"
"the @emph{exit value} of the thread and the thread is terminated.")
#define FUNC_NAME s_scm_call_with_new_thread
{
launch_data data;
scm_i_pthread_t id;
int err;
SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);
SCM_ASSERT (SCM_UNBNDP (handler) || scm_is_true (scm_procedure_p (handler)),
handler, SCM_ARG2, FUNC_NAME);
GC_collect_a_little ();
data.parent = scm_current_dynamic_state ();
data.thunk = thunk;
data.handler = handler;
data.thread = SCM_BOOL_F;
scm_i_pthread_mutex_init (&data.mutex, NULL);
scm_i_pthread_cond_init (&data.cond, NULL);
scm_i_scm_pthread_mutex_lock (&data.mutex);
err = scm_i_pthread_create (&id, NULL, launch_thread, &data);
if (err)
{
scm_i_pthread_mutex_unlock (&data.mutex);
errno = err;
scm_syserror (NULL);
}
while (scm_is_false (data.thread))
scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
scm_i_pthread_mutex_unlock (&data.mutex);
return data.thread;
}
#undef FUNC_NAME
typedef struct {
SCM parent;
scm_t_catch_body body;
void *body_data;
scm_t_catch_handler handler;
void *handler_data;
SCM thread;
scm_i_pthread_mutex_t mutex;
scm_i_pthread_cond_t cond;
} spawn_data;
static void *
really_spawn (void *d)
{
spawn_data *data = (spawn_data *)d;
scm_t_catch_body body = data->body;
void *body_data = data->body_data;
scm_t_catch_handler handler = data->handler;
void *handler_data = data->handler_data;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
scm_i_scm_pthread_mutex_lock (&data->mutex);
data->thread = scm_current_thread ();
scm_i_pthread_cond_signal (&data->cond);
scm_i_pthread_mutex_unlock (&data->mutex);
if (handler == NULL)
t->result = body (body_data);
else
t->result = scm_internal_catch (SCM_BOOL_T,
body, body_data,
handler, handler_data);
return 0;
}
static void *
spawn_thread (void *d)
{
spawn_data *data = (spawn_data *)d;
scm_i_pthread_detach (scm_i_pthread_self ());
scm_i_with_guile_and_parent (really_spawn, d, data->parent);
return NULL;
}
SCM
scm_spawn_thread (scm_t_catch_body body, void *body_data,
scm_t_catch_handler handler, void *handler_data)
{
spawn_data data;
scm_i_pthread_t id;
int err;
data.parent = scm_current_dynamic_state ();
data.body = body;
data.body_data = body_data;
data.handler = handler;
data.handler_data = handler_data;
data.thread = SCM_BOOL_F;
scm_i_pthread_mutex_init (&data.mutex, NULL);
scm_i_pthread_cond_init (&data.cond, NULL);
scm_i_scm_pthread_mutex_lock (&data.mutex);
err = scm_i_pthread_create (&id, NULL, spawn_thread, &data);
if (err)
{
scm_i_pthread_mutex_unlock (&data.mutex);
errno = err;
scm_syserror (NULL);
}
while (scm_is_false (data.thread))
scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
scm_i_pthread_mutex_unlock (&data.mutex);
assert (SCM_I_IS_THREAD (data.thread));
return data.thread;
}
SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
(),
"Move the calling thread to the end of the scheduling queue.")
#define FUNC_NAME s_scm_yield
{
return scm_from_bool (scm_i_sched_yield ());
}
#undef FUNC_NAME
SCM_DEFINE (scm_cancel_thread, "cancel-thread", 1, 0, 0,
(SCM thread),
"Asynchronously force the target @var{thread} to terminate. @var{thread} "
"cannot be the current thread, and if @var{thread} has already terminated or "
"been signaled to terminate, this function is a no-op.")
#define FUNC_NAME s_scm_cancel_thread
{
scm_i_thread *t = NULL;
SCM_VALIDATE_THREAD (1, thread);
t = SCM_I_THREAD_DATA (thread);
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
if (!t->canceled)
{
t->canceled = 1;
scm_i_pthread_mutex_unlock (&t->admin_mutex);
scm_i_pthread_cancel (t->pthread);
}
else
scm_i_pthread_mutex_unlock (&t->admin_mutex);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_set_thread_cleanup_x, "set-thread-cleanup!", 2, 0, 0,
(SCM thread, SCM proc),
"Set the thunk @var{proc} as the cleanup handler for the thread @var{thread}. "
"This handler will be called when the thread exits.")
#define FUNC_NAME s_scm_set_thread_cleanup_x
{
scm_i_thread *t;
SCM_VALIDATE_THREAD (1, thread);
if (!scm_is_false (proc))
SCM_VALIDATE_THUNK (2, proc);
t = SCM_I_THREAD_DATA (thread);
scm_i_pthread_mutex_lock (&t->admin_mutex);
if (!(t->exited || t->canceled))
t->cleanup_handler = proc;
scm_i_pthread_mutex_unlock (&t->admin_mutex);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_thread_cleanup, "thread-cleanup", 1, 0, 0,
(SCM thread),
"Return the cleanup handler installed for the thread @var{thread}.")
#define FUNC_NAME s_scm_thread_cleanup
{
scm_i_thread *t;
SCM ret;
SCM_VALIDATE_THREAD (1, thread);
t = SCM_I_THREAD_DATA (thread);
scm_i_pthread_mutex_lock (&t->admin_mutex);
ret = (t->exited || t->canceled) ? SCM_BOOL_F : t->cleanup_handler;
scm_i_pthread_mutex_unlock (&t->admin_mutex);
return ret;
}
#undef FUNC_NAME
SCM scm_join_thread (SCM thread)
{
return scm_join_thread_timed (thread, SCM_UNDEFINED, SCM_UNDEFINED);
}
SCM_DEFINE (scm_join_thread_timed, "join-thread", 1, 2, 0,
(SCM thread, SCM timeout, SCM timeoutval),
"Suspend execution of the calling thread until the target @var{thread} "
"terminates, unless the target @var{thread} has already terminated. ")
#define FUNC_NAME s_scm_join_thread_timed
{
scm_i_thread *t;
scm_t_timespec ctimeout, *timeout_ptr = NULL;
SCM res = SCM_BOOL_F;
if (! (SCM_UNBNDP (timeoutval)))
res = timeoutval;
SCM_VALIDATE_THREAD (1, thread);
if (scm_is_eq (scm_current_thread (), thread))
SCM_MISC_ERROR ("cannot join the current thread", SCM_EOL);
t = SCM_I_THREAD_DATA (thread);
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
if (! SCM_UNBNDP (timeout))
{
to_timespec (timeout, &ctimeout);
timeout_ptr = &ctimeout;
}
if (t->exited)
res = t->result;
else
{
while (1)
{
int err = block_self (t->join_queue, thread, &t->admin_mutex,
timeout_ptr);
if (err == 0)
{
if (t->exited)
{
res = t->result;
break;
}
}
else if (err == ETIMEDOUT)
break;
scm_i_pthread_mutex_unlock (&t->admin_mutex);
SCM_TICK;
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
/* Check for exit again, since we just released and
reacquired the admin mutex, before the next block_self
call (which would block forever if t has already
exited). */
if (t->exited)
{
res = t->result;
break;
}
}
}
scm_i_pthread_mutex_unlock (&t->admin_mutex);
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a thread.")
#define FUNC_NAME s_scm_thread_p
{
return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
static int
fat_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
{
fat_mutex *m = SCM_MUTEX_DATA (mx);
scm_puts_unlocked ("#<mutex ", port);
scm_uintprint ((scm_t_bits)m, 16, port);
scm_puts_unlocked (">", port);
return 1;
}
static SCM
make_fat_mutex (int recursive, int unchecked_unlock, int external_unlock)
{
fat_mutex *m;
SCM mx;
scm_i_pthread_mutex_t lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
m = scm_gc_malloc (sizeof (fat_mutex), "mutex");
/* Because PTHREAD_MUTEX_INITIALIZER is static, it's plain old data,
and so we can just copy it. */
memcpy (&m->lock, &lock, sizeof (m->lock));
m->owner = SCM_BOOL_F;
m->level = 0;
m->recursive = recursive;
m->unchecked_unlock = unchecked_unlock;
m->allow_external_unlock = external_unlock;
m->waiting = SCM_EOL;
SCM_NEWSMOB (mx, scm_tc16_mutex, (scm_t_bits) m);
m->waiting = make_queue ();
return mx;
}
SCM scm_make_mutex (void)
{
return scm_make_mutex_with_flags (SCM_EOL);
}
SCM_SYMBOL (unchecked_unlock_sym, "unchecked-unlock");
SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
SCM_SYMBOL (recursive_sym, "recursive");
SCM_DEFINE (scm_make_mutex_with_flags, "make-mutex", 0, 0, 1,
(SCM flags),
"Create a new mutex. ")
#define FUNC_NAME s_scm_make_mutex_with_flags
{
int unchecked_unlock = 0, external_unlock = 0, recursive = 0;
SCM ptr = flags;
while (! scm_is_null (ptr))
{
SCM flag = SCM_CAR (ptr);
if (scm_is_eq (flag, unchecked_unlock_sym))
unchecked_unlock = 1;
else if (scm_is_eq (flag, allow_external_unlock_sym))
external_unlock = 1;
else if (scm_is_eq (flag, recursive_sym))
recursive = 1;
else
SCM_MISC_ERROR ("unsupported mutex option: ~a", scm_list_1 (flag));
ptr = SCM_CDR (ptr);
}
return make_fat_mutex (recursive, unchecked_unlock, external_unlock);
}
#undef FUNC_NAME
SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
(void),
"Create a new recursive mutex. ")
#define FUNC_NAME s_scm_make_recursive_mutex
{
return make_fat_mutex (1, 0, 0);
}
#undef FUNC_NAME
SCM_SYMBOL (scm_abandoned_mutex_error_key, "abandoned-mutex-error");
static SCM
fat_mutex_lock (SCM mutex, scm_t_timespec *timeout, SCM owner, int *ret)
{
fat_mutex *m = SCM_MUTEX_DATA (mutex);
SCM new_owner = SCM_UNBNDP (owner) ? scm_current_thread() : owner;
SCM err = SCM_BOOL_F;
struct timeval current_time;
scm_i_scm_pthread_mutex_lock (&m->lock);
while (1)
{
if (m->level == 0)
{
m->owner = new_owner;
m->level++;
if (SCM_I_IS_THREAD (new_owner))
{
scm_i_thread *t = SCM_I_THREAD_DATA (new_owner);
/* FIXME: The order in which `t->admin_mutex' and
`m->lock' are taken differs from that in
`on_thread_exit', potentially leading to deadlocks. */
scm_i_pthread_mutex_lock (&t->admin_mutex);
/* Only keep a weak reference to MUTEX so that it's not
retained when not referenced elsewhere (bug #27450).
The weak pair itself is eventually removed when MUTEX
is unlocked. Note that `t->mutexes' lists mutexes
currently held by T, so it should be small. */
t->mutexes = scm_cons (scm_make_weak_vector (SCM_INUM1, mutex),
t->mutexes);
scm_i_pthread_mutex_unlock (&t->admin_mutex);
}
*ret = 1;
break;
}
else if (SCM_I_IS_THREAD (m->owner) && scm_c_thread_exited_p (m->owner))
{
m->owner = new_owner;
err = scm_cons (scm_abandoned_mutex_error_key,
scm_from_locale_string ("lock obtained on abandoned "
"mutex"));
*ret = 1;
break;
}
else if (scm_is_eq (m->owner, new_owner))
{
if (m->recursive)
{
m->level++;
*ret = 1;
}
else
{
err = scm_cons (scm_misc_error_key,
scm_from_locale_string ("mutex already locked "
"by thread"));
*ret = 0;
}
break;
}
else
{
if (timeout != NULL)
{
gettimeofday (¤t_time, NULL);
if (current_time.tv_sec > timeout->tv_sec ||
(current_time.tv_sec == timeout->tv_sec &&
current_time.tv_usec * 1000 > timeout->tv_nsec))
{
*ret = 0;
break;
}
}
block_self (m->waiting, mutex, &m->lock, timeout);
scm_i_pthread_mutex_unlock (&m->lock);
SCM_TICK;
scm_i_scm_pthread_mutex_lock (&m->lock);
}
}
scm_i_pthread_mutex_unlock (&m->lock);
return err;
}
SCM scm_lock_mutex (SCM mx)
{
return scm_lock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
}
SCM_DEFINE (scm_lock_mutex_timed, "lock-mutex", 1, 2, 0,
(SCM m, SCM timeout, SCM owner),
"Lock mutex @var{m}. If the mutex is already locked, the calling\n"
"thread blocks until the mutex becomes available. The function\n"
"returns when the calling thread owns the lock on @var{m}.\n"
"Locking a mutex that a thread already owns will succeed right\n"
"away and will not block the thread. That is, Guile's mutexes\n"
"are @emph{recursive}.")
#define FUNC_NAME s_scm_lock_mutex_timed
{
SCM exception;
int ret = 0;
scm_t_timespec cwaittime, *waittime = NULL;
SCM_VALIDATE_MUTEX (1, m);
if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
{
to_timespec (timeout, &cwaittime);
waittime = &cwaittime;
}
if (!SCM_UNBNDP (owner) && !scm_is_false (owner))
SCM_VALIDATE_THREAD (3, owner);
exception = fat_mutex_lock (m, waittime, owner, &ret);
if (!scm_is_false (exception))
scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
return ret ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
static void
lock_mutex_return_void (SCM mx)
{
(void) scm_lock_mutex (mx);
}
static void
unlock_mutex_return_void (SCM mx)
{
(void) scm_unlock_mutex (mx);
}
void
scm_dynwind_lock_mutex (SCM mutex)
{
scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex,
SCM_F_WIND_EXPLICITLY);
scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex,
SCM_F_WIND_EXPLICITLY);
}
SCM_DEFINE (scm_try_mutex, "try-mutex", 1, 0, 0,
(SCM mutex),
"Try to lock @var{mutex}. If the mutex is already locked by someone "
"else, return @code{#f}. Else lock the mutex and return @code{#t}. ")
#define FUNC_NAME s_scm_try_mutex
{
SCM exception;
int ret = 0;
scm_t_timespec cwaittime, *waittime = NULL;
SCM_VALIDATE_MUTEX (1, mutex);
to_timespec (scm_from_int(0), &cwaittime);
waittime = &cwaittime;
exception = fat_mutex_lock (mutex, waittime, SCM_UNDEFINED, &ret);
if (!scm_is_false (exception))
scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
return ret ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
/*** Fat condition variables */
typedef struct {
scm_i_pthread_mutex_t lock;
SCM waiting; /* the threads waiting for this condition. */
} fat_cond;
#define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
#define SCM_CONDVAR_DATA(x) ((fat_cond *) SCM_SMOB_DATA (x))
static void
remove_mutex_from_thread (SCM mutex, scm_i_thread *t)
{
SCM walk, prev;
for (prev = SCM_BOOL_F, walk = t->mutexes; scm_is_pair (walk);
walk = SCM_CDR (walk))
{
if (scm_is_eq (mutex, scm_c_weak_vector_ref (SCM_CAR (walk), 0)))
{
if (scm_is_pair (prev))
SCM_SETCDR (prev, SCM_CDR (walk));
else
t->mutexes = SCM_CDR (walk);
break;
}
}
}
static int
fat_mutex_unlock (SCM mutex, SCM cond,
const scm_t_timespec *waittime, int relock)
{
SCM owner;
fat_mutex *m = SCM_MUTEX_DATA (mutex);
fat_cond *c = NULL;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
int err = 0, ret = 0;
scm_i_scm_pthread_mutex_lock (&m->lock);
owner = m->owner;
if (!scm_is_eq (owner, t->handle))
{
if (m->level == 0)
{
if (!m->unchecked_unlock)
{
scm_i_pthread_mutex_unlock (&m->lock);
scm_misc_error (NULL, "mutex not locked", SCM_EOL);
}
owner = t->handle;
}
else if (!m->allow_external_unlock)
{
scm_i_pthread_mutex_unlock (&m->lock);
scm_misc_error (NULL, "mutex not locked by current thread", SCM_EOL);
}
}
if (! (SCM_UNBNDP (cond)))
{
c = SCM_CONDVAR_DATA (cond);
while (1)
{
int brk = 0;
if (m->level > 0)
m->level--;
if (m->level == 0)
{
/* Change the owner of MUTEX. */
remove_mutex_from_thread (mutex, t);
m->owner = unblock_from_queue (m->waiting);
}
t->block_asyncs++;
err = block_self (c->waiting, cond, &m->lock, waittime);
scm_i_pthread_mutex_unlock (&m->lock);
if (err == 0)
{
ret = 1;
brk = 1;
}
else if (err == ETIMEDOUT)
{
ret = 0;
brk = 1;
}
else if (err != EINTR)
{
errno = err;
scm_syserror (NULL);
}
if (brk)
{
if (relock)
scm_lock_mutex_timed (mutex, SCM_UNDEFINED, owner);
t->block_asyncs--;
break;
}
t->block_asyncs--;
scm_async_tick ();
scm_remember_upto_here_2 (cond, mutex);
scm_i_scm_pthread_mutex_lock (&m->lock);
}
}
else
{
if (m->level > 0)
m->level--;
if (m->level == 0)
{
/* Change the owner of MUTEX. */
remove_mutex_from_thread (mutex, t);
m->owner = unblock_from_queue (m->waiting);
}
scm_i_pthread_mutex_unlock (&m->lock);
ret = 1;
}
return ret;
}
SCM scm_unlock_mutex (SCM mx)
{
return scm_unlock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
}
SCM_DEFINE (scm_unlock_mutex_timed, "unlock-mutex", 1, 2, 0,
(SCM mx, SCM cond, SCM timeout),
"Unlocks @var{mutex} if the calling thread owns the lock on "
"@var{mutex}. Calling unlock-mutex on a mutex not owned by the current "
"thread results in undefined behaviour. Once a mutex has been unlocked, "
"one thread blocked on @var{mutex} is awakened and grabs the mutex "
"lock. Every call to @code{lock-mutex} by this thread must be matched "
"with a call to @code{unlock-mutex}. Only the last call to "
"@code{unlock-mutex} will actually unlock the mutex. ")
#define FUNC_NAME s_scm_unlock_mutex_timed
{
scm_t_timespec cwaittime, *waittime = NULL;
SCM_VALIDATE_MUTEX (1, mx);
if (! (SCM_UNBNDP (cond)))
{
SCM_VALIDATE_CONDVAR (2, cond);
if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
{
to_timespec (timeout, &cwaittime);
waittime = &cwaittime;
}
}
return fat_mutex_unlock (mx, cond, waittime, 0) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a mutex.")
#define FUNC_NAME s_scm_mutex_p
{
return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
(SCM mx),
"Return the thread owning @var{mx}, or @code{#f}.")
#define FUNC_NAME s_scm_mutex_owner
{
SCM owner;
fat_mutex *m = NULL;
SCM_VALIDATE_MUTEX (1, mx);
m = SCM_MUTEX_DATA (mx);
scm_i_pthread_mutex_lock (&m->lock);
owner = m->owner;
scm_i_pthread_mutex_unlock (&m->lock);
return owner;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
(SCM mx),
"Return the lock level of mutex @var{mx}.")
#define FUNC_NAME s_scm_mutex_level
{
SCM_VALIDATE_MUTEX (1, mx);
return scm_from_int (SCM_MUTEX_DATA(mx)->level);
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
(SCM mx),
"Returns @code{#t} if the mutex @var{mx} is locked.")
#define FUNC_NAME s_scm_mutex_locked_p
{
SCM_VALIDATE_MUTEX (1, mx);
return SCM_MUTEX_DATA (mx)->level > 0 ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
static int
fat_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
{
fat_cond *c = SCM_CONDVAR_DATA (cv);
scm_puts_unlocked ("#<condition-variable ", port);
scm_uintprint ((scm_t_bits)c, 16, port);
scm_puts_unlocked (">", port);
return 1;
}
SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
(void),
"Make a new condition variable.")
#define FUNC_NAME s_scm_make_condition_variable
{
fat_cond *c;
SCM cv;
c = scm_gc_malloc (sizeof (fat_cond), "condition variable");
c->waiting = SCM_EOL;
SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
c->waiting = make_queue ();
return cv;
}
#undef FUNC_NAME
SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
(SCM cv, SCM mx, SCM t),
"Wait until condition variable @var{cv} has been signalled. While waiting, "
"mutex @var{mx} is atomically unlocked (as with @code{unlock-mutex}) and "
"is locked again when this function returns. When @var{t} is given, "
"it specifies a point in time where the waiting should be aborted. It "
"can be either a integer as returned by @code{current-time} or a pair "
"as returned by @code{gettimeofday}. When the waiting is aborted the "
"mutex is locked and @code{#f} is returned. When the condition "
"variable is in fact signalled, the mutex is also locked and @code{#t} "
"is returned. ")
#define FUNC_NAME s_scm_timed_wait_condition_variable
{
scm_t_timespec waittime, *waitptr = NULL;
SCM_VALIDATE_CONDVAR (1, cv);
SCM_VALIDATE_MUTEX (2, mx);
if (!SCM_UNBNDP (t))
{
to_timespec (t, &waittime);
waitptr = &waittime;
}
return fat_mutex_unlock (mx, cv, waitptr, 1) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
static void
fat_cond_signal (fat_cond *c)
{
unblock_from_queue (c->waiting);
}
SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
(SCM cv),
"Wake up one thread that is waiting for @var{cv}")
#define FUNC_NAME s_scm_signal_condition_variable
{
SCM_VALIDATE_CONDVAR (1, cv);
fat_cond_signal (SCM_CONDVAR_DATA (cv));
return SCM_BOOL_T;
}
#undef FUNC_NAME
static void
fat_cond_broadcast (fat_cond *c)
{
while (scm_is_true (unblock_from_queue (c->waiting)))
;
}
SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
(SCM cv),
"Wake up all threads that are waiting for @var{cv}. ")
#define FUNC_NAME s_scm_broadcast_condition_variable
{
SCM_VALIDATE_CONDVAR (1, cv);
fat_cond_broadcast (SCM_CONDVAR_DATA (cv));
return SCM_BOOL_T;
}
#undef FUNC_NAME
SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a condition variable.")
#define FUNC_NAME s_scm_condition_variable_p
{
return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
/*** Select */
struct select_args
{
int nfds;
fd_set *read_fds;
fd_set *write_fds;
fd_set *except_fds;
struct timeval *timeout;
int result;
int errno_value;
};
static void *
do_std_select (void *args)
{
struct select_args *select_args;
select_args = (struct select_args *) args;
select_args->result =
select (select_args->nfds,
select_args->read_fds, select_args->write_fds,
select_args->except_fds, select_args->timeout);
select_args->errno_value = errno;
return NULL;
}
int
scm_std_select (int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout)
{
fd_set my_readfds;
int res, eno, wakeup_fd;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
struct select_args args;
if (readfds == NULL)
{
FD_ZERO (&my_readfds);
readfds = &my_readfds;
}
while (scm_i_setup_sleep (t, SCM_BOOL_F, NULL, t->sleep_pipe[1]))
SCM_TICK;
wakeup_fd = t->sleep_pipe[0];
FD_SET (wakeup_fd, readfds);
if (wakeup_fd >= nfds)
nfds = wakeup_fd+1;
args.nfds = nfds;
args.read_fds = readfds;
args.write_fds = writefds;
args.except_fds = exceptfds;
args.timeout = timeout;
/* Explicitly cooperate with the GC. */
scm_without_guile (do_std_select, &args);
res = args.result;
eno = args.errno_value;
t->sleep_fd = -1;
scm_i_reset_sleep (t);
if (res > 0 && FD_ISSET (wakeup_fd, readfds))
{
char dummy;
full_read (wakeup_fd, &dummy, 1);
FD_CLR (wakeup_fd, readfds);
res -= 1;
if (res == 0)
{
eno = EINTR;
res = -1;
}
}
errno = eno;
return res;
}
/* Convenience API for blocking while in guile mode. */
#if SCM_USE_PTHREAD_THREADS
/* It seems reasonable to not run procedures related to mutex and condition
variables within `GC_do_blocking ()' since, (i) the GC can operate even
without it, and (ii) the only potential gain would be GC latency. See
http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251
for a discussion of the pros and cons. */
int
scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
int res = scm_i_pthread_mutex_lock (mutex);
return res;
}
static void
do_unlock (void *data)
{
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
}
void
scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
scm_i_scm_pthread_mutex_lock (mutex);
scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
}
int
scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
{
int res;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
t->held_mutex = mutex;
res = scm_i_pthread_cond_wait (cond, mutex);
t->held_mutex = NULL;
return res;
}
int
scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
scm_i_pthread_mutex_t *mutex,
const scm_t_timespec *wt)
{
int res;
scm_i_thread *t = SCM_I_CURRENT_THREAD;
t->held_mutex = mutex;
res = scm_i_pthread_cond_timedwait (cond, mutex, wt);
t->held_mutex = NULL;
return res;
}
#endif
static void
do_unlock_with_asyncs (void *data)
{
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
SCM_I_CURRENT_THREAD->block_asyncs--;
}
void
scm_i_dynwind_pthread_mutex_lock_block_asyncs (scm_i_pthread_mutex_t *mutex)
{
SCM_I_CURRENT_THREAD->block_asyncs++;
scm_i_scm_pthread_mutex_lock (mutex);
scm_dynwind_unwind_handler (do_unlock_with_asyncs, mutex,
SCM_F_WIND_EXPLICITLY);
}
unsigned long
scm_std_usleep (unsigned long usecs)
{
struct timeval tv;
tv.tv_usec = usecs % 1000000;
tv.tv_sec = usecs / 1000000;
scm_std_select (0, NULL, NULL, NULL, &tv);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
unsigned int
scm_std_sleep (unsigned int secs)
{
struct timeval tv;
tv.tv_usec = 0;
tv.tv_sec = secs;
scm_std_select (0, NULL, NULL, NULL, &tv);
return tv.tv_sec;
}
/*** Misc */
SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
(void),
"Return the thread that called this function.")
#define FUNC_NAME s_scm_current_thread
{
return SCM_I_CURRENT_THREAD->handle;
}
#undef FUNC_NAME
static SCM
scm_c_make_list (size_t n, SCM fill)
{
SCM res = SCM_EOL;
while (n-- > 0)
res = scm_cons (fill, res);
return res;
}
SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
(void),
"Return a list of all threads.")
#define FUNC_NAME s_scm_all_threads
{
/* We can not allocate while holding the thread_admin_mutex because
of the way GC is done.
*/
int n = thread_count;
scm_i_thread *t;
SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l;
scm_i_pthread_mutex_lock (&thread_admin_mutex);
l = &list;
for (t = all_threads; t && n > 0; t = t->next_thread)
{
if (t != scm_i_signal_delivery_thread)
{
SCM_SETCAR (*l, t->handle);
l = SCM_CDRLOC (*l);
}
n--;
}
*l = SCM_EOL;
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
return list;
}
#undef FUNC_NAME
SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
(SCM thread),
"Return @code{#t} iff @var{thread} has exited.\n")
#define FUNC_NAME s_scm_thread_exited_p
{
return scm_from_bool (scm_c_thread_exited_p (thread));
}
#undef FUNC_NAME
int
scm_c_thread_exited_p (SCM thread)
#define FUNC_NAME s_scm_thread_exited_p
{
scm_i_thread *t;
SCM_VALIDATE_THREAD (1, thread);
t = SCM_I_THREAD_DATA (thread);
return t->exited;
}
#undef FUNC_NAME
SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0,
(void),
"Return the total number of processors of the machine, which\n"
"is guaranteed to be at least 1. A ``processor'' here is a\n"
"thread execution unit, which can be either:\n\n"
"@itemize\n"
"@item an execution core in a (possibly multi-core) chip, in a\n"
" (possibly multi- chip) module, in a single computer, or\n"
"@item a thread execution unit inside a core in the case of\n"
" @dfn{hyper-threaded} CPUs.\n"
"@end itemize\n\n"
"Which of the two definitions is used, is unspecified.\n")
#define FUNC_NAME s_scm_total_processor_count
{
return scm_from_ulong (num_processors (NPROC_ALL));
}
#undef FUNC_NAME
SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0,
(void),
"Like @code{total-processor-count}, but return the number of\n"
"processors available to the current process. See\n"
"@code{setaffinity} and @code{getaffinity} for more\n"
"information.\n")
#define FUNC_NAME s_scm_current_processor_count
{
return scm_from_ulong (num_processors (NPROC_CURRENT));
}
#undef FUNC_NAME
static scm_i_pthread_cond_t wake_up_cond;
static int threads_initialized_p = 0;
/* This mutex is used by SCM_CRITICAL_SECTION_START/END.
*/
scm_i_pthread_mutex_t scm_i_critical_section_mutex;
static SCM dynwind_critical_section_mutex;
void
scm_dynwind_critical_section (SCM mutex)
{
if (scm_is_false (mutex))
mutex = dynwind_critical_section_mutex;
scm_dynwind_lock_mutex (mutex);
scm_dynwind_block_asyncs ();
}
/*** Initialization */
scm_i_pthread_mutex_t scm_i_misc_mutex;
#if SCM_USE_PTHREAD_THREADS
pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
#endif
void
scm_threads_prehistory (void *base)
{
#if SCM_USE_PTHREAD_THREADS
pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
PTHREAD_MUTEX_RECURSIVE);
#endif
scm_i_pthread_mutex_init (&scm_i_critical_section_mutex,
scm_i_pthread_mutexattr_recursive);
scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
scm_i_pthread_cond_init (&wake_up_cond, NULL);
thread_gc_kind =
GC_new_kind (GC_new_free_list (),
GC_MAKE_PROC (GC_new_proc (thread_mark), 0),
0, 1);
guilify_self_1 ((struct GC_stack_base *) base);
}
scm_t_bits scm_tc16_thread;
scm_t_bits scm_tc16_mutex;
scm_t_bits scm_tc16_condvar;
void
scm_init_threads ()
{
scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_i_thread));
scm_set_smob_print (scm_tc16_thread, thread_print);
scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (fat_mutex));
scm_set_smob_print (scm_tc16_mutex, fat_mutex_print);
scm_tc16_condvar = scm_make_smob_type ("condition-variable",
sizeof (fat_cond));
scm_set_smob_print (scm_tc16_condvar, fat_cond_print);
scm_i_default_dynamic_state = SCM_BOOL_F;
guilify_self_2 (SCM_BOOL_F);
threads_initialized_p = 1;
dynwind_critical_section_mutex = scm_make_recursive_mutex ();
}
void
scm_init_threads_default_dynamic_state ()
{
SCM state = scm_make_dynamic_state (scm_current_dynamic_state ());
scm_i_default_dynamic_state = state;
}
void
scm_init_thread_procs ()
{
#include "libguile/threads.x"
}
/* IA64-specific things. */
#ifdef __ia64__
# ifdef __hpux
# include <sys/param.h>
# include <sys/pstat.h>
void *
scm_ia64_register_backing_store_base (void)
{
struct pst_vm_status vm_status;
int i = 0;
while (pstat_getprocvm (&vm_status, sizeof (vm_status), 0, i++) == 1)
if (vm_status.pst_type == PS_RSESTACK)
return (void *) vm_status.pst_vaddr;
abort ();
}
void *
scm_ia64_ar_bsp (const void *ctx)
{
uint64_t bsp;
__uc_get_ar_bsp (ctx, &bsp);
return (void *) bsp;
}
# endif /* hpux */
# ifdef linux
# include <ucontext.h>
void *
scm_ia64_register_backing_store_base (void)
{
extern void *__libc_ia64_register_backing_store_base;
return __libc_ia64_register_backing_store_base;
}
void *
scm_ia64_ar_bsp (const void *opaque)
{
const ucontext_t *ctx = opaque;
return (void *) ctx->uc_mcontext.sc_ar_bsp;
}
# endif /* linux */
# ifdef __FreeBSD__
# include <ucontext.h>
void *
scm_ia64_register_backing_store_base (void)
{
return (void *)0x8000000000000000;
}
void *
scm_ia64_ar_bsp (const void *opaque)
{
const ucontext_t *ctx = opaque;
return (void *)(ctx->uc_mcontext.mc_special.bspstore
+ ctx->uc_mcontext.mc_special.ndirty);
}
# endif /* __FreeBSD__ */
#endif /* __ia64__ */
/*
Local Variables:
c-file-style: "gnu"
End:
*/
|