1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
|
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
@c 2007, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.
@node Compound Data Types
@section Compound Data Types
This chapter describes Guile's compound data types. By @dfn{compound}
we mean that the primary purpose of these data types is to act as
containers for other kinds of data (including other compound objects).
For instance, a (non-uniform) vector with length 5 is a container that
can hold five arbitrary Scheme objects.
The various kinds of container object differ from each other in how
their memory is allocated, how they are indexed, and how particular
values can be looked up within them.
@menu
* Pairs:: Scheme's basic building block.
* Lists:: Special list functions supported by Guile.
* Vectors:: One-dimensional arrays of Scheme objects.
* Bit Vectors:: Vectors of bits.
* Arrays:: Matrices, etc.
* VLists:: Vector-like lists.
* Record Overview:: Walking through the maze of record APIs.
* SRFI-9 Records:: The standard, recommended record API.
* Records:: Guile's historical record API.
* Structures:: Low-level record representation.
* Dictionary Types:: About dictionary types in general.
* Association Lists:: List-based dictionaries.
* VHashes:: VList-based dictionaries.
* Hash Tables:: Table-based dictionaries.
@end menu
@node Pairs
@subsection Pairs
@tpindex Pairs
Pairs are used to combine two Scheme objects into one compound object.
Hence the name: A pair stores a pair of objects.
The data type @dfn{pair} is extremely important in Scheme, just like in
any other Lisp dialect. The reason is that pairs are not only used to
make two values available as one object, but that pairs are used for
constructing lists of values. Because lists are so important in Scheme,
they are described in a section of their own (@pxref{Lists}).
Pairs can literally get entered in source code or at the REPL, in the
so-called @dfn{dotted list} syntax. This syntax consists of an opening
parentheses, the first element of the pair, a dot, the second element
and a closing parentheses. The following example shows how a pair
consisting of the two numbers 1 and 2, and a pair containing the symbols
@code{foo} and @code{bar} can be entered. It is very important to write
the whitespace before and after the dot, because otherwise the Scheme
parser would not be able to figure out where to split the tokens.
@lisp
(1 . 2)
(foo . bar)
@end lisp
But beware, if you want to try out these examples, you have to
@dfn{quote} the expressions. More information about quotation is
available in the section @ref{Expression Syntax}. The correct way
to try these examples is as follows.
@lisp
'(1 . 2)
@result{}
(1 . 2)
'(foo . bar)
@result{}
(foo . bar)
@end lisp
A new pair is made by calling the procedure @code{cons} with two
arguments. Then the argument values are stored into a newly allocated
pair, and the pair is returned. The name @code{cons} stands for
"construct". Use the procedure @code{pair?} to test whether a
given Scheme object is a pair or not.
@rnindex cons
@deffn {Scheme Procedure} cons x y
@deffnx {C Function} scm_cons (x, y)
Return a newly allocated pair whose car is @var{x} and whose
cdr is @var{y}. The pair is guaranteed to be different (in the
sense of @code{eq?}) from every previously existing object.
@end deffn
@rnindex pair?
@deffn {Scheme Procedure} pair? x
@deffnx {C Function} scm_pair_p (x)
Return @code{#t} if @var{x} is a pair; otherwise return
@code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_pair (SCM x)
Return 1 when @var{x} is a pair; otherwise return 0.
@end deftypefn
The two parts of a pair are traditionally called @dfn{car} and
@dfn{cdr}. They can be retrieved with procedures of the same name
(@code{car} and @code{cdr}), and can be modified with the procedures
@code{set-car!} and @code{set-cdr!}.
Since a very common operation in Scheme programs is to access the car of
a car of a pair, or the car of the cdr of a pair, etc., the procedures
called @code{caar}, @code{cadr} and so on are also predefined. However,
using these procedures is often detrimental to readability, and
error-prone. Thus, accessing the contents of a list is usually better
achieved using pattern matching techniques (@pxref{Pattern Matching}).
@rnindex car
@rnindex cdr
@deffn {Scheme Procedure} car pair
@deffnx {Scheme Procedure} cdr pair
@deffnx {C Function} scm_car (pair)
@deffnx {C Function} scm_cdr (pair)
Return the car or the cdr of @var{pair}, respectively.
@end deffn
@deftypefn {C Macro} SCM SCM_CAR (SCM pair)
@deftypefnx {C Macro} SCM SCM_CDR (SCM pair)
These two macros are the fastest way to access the car or cdr of a
pair; they can be thought of as compiling into a single memory
reference.
These macros do no checking at all. The argument @var{pair} must be a
valid pair.
@end deftypefn
@deffn {Scheme Procedure} cddr pair
@deffnx {Scheme Procedure} cdar pair
@deffnx {Scheme Procedure} cadr pair
@deffnx {Scheme Procedure} caar pair
@deffnx {Scheme Procedure} cdddr pair
@deffnx {Scheme Procedure} cddar pair
@deffnx {Scheme Procedure} cdadr pair
@deffnx {Scheme Procedure} cdaar pair
@deffnx {Scheme Procedure} caddr pair
@deffnx {Scheme Procedure} cadar pair
@deffnx {Scheme Procedure} caadr pair
@deffnx {Scheme Procedure} caaar pair
@deffnx {Scheme Procedure} cddddr pair
@deffnx {Scheme Procedure} cdddar pair
@deffnx {Scheme Procedure} cddadr pair
@deffnx {Scheme Procedure} cddaar pair
@deffnx {Scheme Procedure} cdaddr pair
@deffnx {Scheme Procedure} cdadar pair
@deffnx {Scheme Procedure} cdaadr pair
@deffnx {Scheme Procedure} cdaaar pair
@deffnx {Scheme Procedure} cadddr pair
@deffnx {Scheme Procedure} caddar pair
@deffnx {Scheme Procedure} cadadr pair
@deffnx {Scheme Procedure} cadaar pair
@deffnx {Scheme Procedure} caaddr pair
@deffnx {Scheme Procedure} caadar pair
@deffnx {Scheme Procedure} caaadr pair
@deffnx {Scheme Procedure} caaaar pair
@deffnx {C Function} scm_cddr (pair)
@deffnx {C Function} scm_cdar (pair)
@deffnx {C Function} scm_cadr (pair)
@deffnx {C Function} scm_caar (pair)
@deffnx {C Function} scm_cdddr (pair)
@deffnx {C Function} scm_cddar (pair)
@deffnx {C Function} scm_cdadr (pair)
@deffnx {C Function} scm_cdaar (pair)
@deffnx {C Function} scm_caddr (pair)
@deffnx {C Function} scm_cadar (pair)
@deffnx {C Function} scm_caadr (pair)
@deffnx {C Function} scm_caaar (pair)
@deffnx {C Function} scm_cddddr (pair)
@deffnx {C Function} scm_cdddar (pair)
@deffnx {C Function} scm_cddadr (pair)
@deffnx {C Function} scm_cddaar (pair)
@deffnx {C Function} scm_cdaddr (pair)
@deffnx {C Function} scm_cdadar (pair)
@deffnx {C Function} scm_cdaadr (pair)
@deffnx {C Function} scm_cdaaar (pair)
@deffnx {C Function} scm_cadddr (pair)
@deffnx {C Function} scm_caddar (pair)
@deffnx {C Function} scm_cadadr (pair)
@deffnx {C Function} scm_cadaar (pair)
@deffnx {C Function} scm_caaddr (pair)
@deffnx {C Function} scm_caadar (pair)
@deffnx {C Function} scm_caaadr (pair)
@deffnx {C Function} scm_caaaar (pair)
These procedures are compositions of @code{car} and @code{cdr}, where
for example @code{caddr} could be defined by
@lisp
(define caddr (lambda (x) (car (cdr (cdr x)))))
@end lisp
@code{cadr}, @code{caddr} and @code{cadddr} pick out the second, third
or fourth elements of a list, respectively. SRFI-1 provides the same
under the names @code{second}, @code{third} and @code{fourth}
(@pxref{SRFI-1 Selectors}).
@end deffn
@rnindex set-car!
@deffn {Scheme Procedure} set-car! pair value
@deffnx {C Function} scm_set_car_x (pair, value)
Stores @var{value} in the car field of @var{pair}. The value returned
by @code{set-car!} is unspecified.
@end deffn
@rnindex set-cdr!
@deffn {Scheme Procedure} set-cdr! pair value
@deffnx {C Function} scm_set_cdr_x (pair, value)
Stores @var{value} in the cdr field of @var{pair}. The value returned
by @code{set-cdr!} is unspecified.
@end deffn
@node Lists
@subsection Lists
@tpindex Lists
A very important data type in Scheme---as well as in all other Lisp
dialects---is the data type @dfn{list}.@footnote{Strictly speaking,
Scheme does not have a real datatype @dfn{list}. Lists are made up of
@dfn{chained pairs}, and only exist by definition---a list is a chain
of pairs which looks like a list.}
This is the short definition of what a list is:
@itemize @bullet
@item
Either the empty list @code{()},
@item
or a pair which has a list in its cdr.
@end itemize
@c FIXME::martin: Describe the pair chaining in more detail.
@c FIXME::martin: What is a proper, what an improper list?
@c What is a circular list?
@c FIXME::martin: Maybe steal some graphics from the Elisp reference
@c manual?
@menu
* List Syntax:: Writing literal lists.
* List Predicates:: Testing lists.
* List Constructors:: Creating new lists.
* List Selection:: Selecting from lists, getting their length.
* Append/Reverse:: Appending and reversing lists.
* List Modification:: Modifying existing lists.
* List Searching:: Searching for list elements
* List Mapping:: Applying procedures to lists.
@end menu
@node List Syntax
@subsubsection List Read Syntax
The syntax for lists is an opening parentheses, then all the elements of
the list (separated by whitespace) and finally a closing
parentheses.@footnote{Note that there is no separation character between
the list elements, like a comma or a semicolon.}.
@lisp
(1 2 3) ; @r{a list of the numbers 1, 2 and 3}
("foo" bar 3.1415) ; @r{a string, a symbol and a real number}
() ; @r{the empty list}
@end lisp
The last example needs a bit more explanation. A list with no elements,
called the @dfn{empty list}, is special in some ways. It is used for
terminating lists by storing it into the cdr of the last pair that makes
up a list. An example will clear that up:
@lisp
(car '(1))
@result{}
1
(cdr '(1))
@result{}
()
@end lisp
This example also shows that lists have to be quoted when written
(@pxref{Expression Syntax}), because they would otherwise be
mistakingly taken as procedure applications (@pxref{Simple
Invocation}).
@node List Predicates
@subsubsection List Predicates
Often it is useful to test whether a given Scheme object is a list or
not. List-processing procedures could use this information to test
whether their input is valid, or they could do different things
depending on the datatype of their arguments.
@rnindex list?
@deffn {Scheme Procedure} list? x
@deffnx {C Function} scm_list_p (x)
Return @code{#t} if @var{x} is a proper list, else @code{#f}.
@end deffn
The predicate @code{null?} is often used in list-processing code to
tell whether a given list has run out of elements. That is, a loop
somehow deals with the elements of a list until the list satisfies
@code{null?}. Then, the algorithm terminates.
@rnindex null?
@deffn {Scheme Procedure} null? x
@deffnx {C Function} scm_null_p (x)
Return @code{#t} if @var{x} is the empty list, else @code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_null (SCM x)
Return 1 when @var{x} is the empty list; otherwise return 0.
@end deftypefn
@node List Constructors
@subsubsection List Constructors
This section describes the procedures for constructing new lists.
@code{list} simply returns a list where the elements are the arguments,
@code{cons*} is similar, but the last argument is stored in the cdr of
the last pair of the list.
@c C Function scm_list(rest) used to be documented here, but it's a
@c no-op since it does nothing but return the list the caller must
@c have already created.
@c
@deffn {Scheme Procedure} list elem @dots{}
@deffnx {C Function} scm_list_1 (elem1)
@deffnx {C Function} scm_list_2 (elem1, elem2)
@deffnx {C Function} scm_list_3 (elem1, elem2, elem3)
@deffnx {C Function} scm_list_4 (elem1, elem2, elem3, elem4)
@deffnx {C Function} scm_list_5 (elem1, elem2, elem3, elem4, elem5)
@deffnx {C Function} scm_list_n (elem1, @dots{}, elemN, @nicode{SCM_UNDEFINED})
@rnindex list
Return a new list containing elements @var{elem} @enddots{}.
@code{scm_list_n} takes a variable number of arguments, terminated by
the special @code{SCM_UNDEFINED}. That final @code{SCM_UNDEFINED} is
not included in the list. None of @var{elem} @dots{} can
themselves be @code{SCM_UNDEFINED}, or @code{scm_list_n} will
terminate at that point.
@end deffn
@c C Function scm_cons_star(arg1,rest) used to be documented here,
@c but it's not really a useful interface, since it expects the
@c caller to have already consed up all but the first argument
@c already.
@c
@deffn {Scheme Procedure} cons* arg1 arg2 @dots{}
Like @code{list}, but the last arg provides the tail of the
constructed list, returning @code{(cons @var{arg1} (cons
@var{arg2} (cons @dots{} @var{argn})))}. Requires at least one
argument. If given one argument, that argument is returned as
result. This function is called @code{list*} in some other
Schemes and in Common LISP.
@end deffn
@deffn {Scheme Procedure} list-copy lst
@deffnx {C Function} scm_list_copy (lst)
Return a (newly-created) copy of @var{lst}.
@end deffn
@deffn {Scheme Procedure} make-list n [init]
Create a list containing of @var{n} elements, where each element is
initialized to @var{init}. @var{init} defaults to the empty list
@code{()} if not given.
@end deffn
Note that @code{list-copy} only makes a copy of the pairs which make up
the spine of the lists. The list elements are not copied, which means
that modifying the elements of the new list also modifies the elements
of the old list. On the other hand, applying procedures like
@code{set-cdr!} or @code{delv!} to the new list will not alter the old
list. If you also need to copy the list elements (making a deep copy),
use the procedure @code{copy-tree} (@pxref{Copying}).
@node List Selection
@subsubsection List Selection
These procedures are used to get some information about a list, or to
retrieve one or more elements of a list.
@rnindex length
@deffn {Scheme Procedure} length lst
@deffnx {C Function} scm_length (lst)
Return the number of elements in list @var{lst}.
@end deffn
@deffn {Scheme Procedure} last-pair lst
@deffnx {C Function} scm_last_pair (lst)
Return the last pair in @var{lst}, signalling an error if
@var{lst} is circular.
@end deffn
@rnindex list-ref
@deffn {Scheme Procedure} list-ref list k
@deffnx {C Function} scm_list_ref (list, k)
Return the @var{k}th element from @var{list}.
@end deffn
@rnindex list-tail
@deffn {Scheme Procedure} list-tail lst k
@deffnx {Scheme Procedure} list-cdr-ref lst k
@deffnx {C Function} scm_list_tail (lst, k)
Return the "tail" of @var{lst} beginning with its @var{k}th element.
The first element of the list is considered to be element 0.
@code{list-tail} and @code{list-cdr-ref} are identical. It may help to
think of @code{list-cdr-ref} as accessing the @var{k}th cdr of the list,
or returning the results of cdring @var{k} times down @var{lst}.
@end deffn
@deffn {Scheme Procedure} list-head lst k
@deffnx {C Function} scm_list_head (lst, k)
Copy the first @var{k} elements from @var{lst} into a new list, and
return it.
@end deffn
@node Append/Reverse
@subsubsection Append and Reverse
@code{append} and @code{append!} are used to concatenate two or more
lists in order to form a new list. @code{reverse} and @code{reverse!}
return lists with the same elements as their arguments, but in reverse
order. The procedure variants with an @code{!} directly modify the
pairs which form the list, whereas the other procedures create new
pairs. This is why you should be careful when using the side-effecting
variants.
@rnindex append
@deffn {Scheme Procedure} append lst @dots{} obj
@deffnx {Scheme Procedure} append
@deffnx {Scheme Procedure} append! lst @dots{} obj
@deffnx {Scheme Procedure} append!
@deffnx {C Function} scm_append (lstlst)
@deffnx {C Function} scm_append_x (lstlst)
Return a list comprising all the elements of lists @var{lst} @dots{}
@var{obj}. If called with no arguments, return the empty list.
@lisp
(append '(x) '(y)) @result{} (x y)
(append '(a) '(b c d)) @result{} (a b c d)
(append '(a (b)) '((c))) @result{} (a (b) (c))
@end lisp
The last argument @var{obj} may actually be any object; an improper
list results if the last argument is not a proper list.
@lisp
(append '(a b) '(c . d)) @result{} (a b c . d)
(append '() 'a) @result{} a
@end lisp
@code{append} doesn't modify the given lists, but the return may share
structure with the final @var{obj}. @code{append!} is permitted, but
not required, to modify the given lists to form its return.
For @code{scm_append} and @code{scm_append_x}, @var{lstlst} is a list
of the list operands @var{lst} @dots{} @var{obj}. That @var{lstlst}
itself is not modified or used in the return.
@end deffn
@rnindex reverse
@deffn {Scheme Procedure} reverse lst
@deffnx {Scheme Procedure} reverse! lst [newtail]
@deffnx {C Function} scm_reverse (lst)
@deffnx {C Function} scm_reverse_x (lst, newtail)
Return a list comprising the elements of @var{lst}, in reverse order.
@code{reverse} constructs a new list. @code{reverse!} is permitted, but
not required, to modify @var{lst} in constructing its return.
For @code{reverse!}, the optional @var{newtail} is appended to the
result. @var{newtail} isn't reversed, it simply becomes the list
tail. For @code{scm_reverse_x}, the @var{newtail} parameter is
mandatory, but can be @code{SCM_EOL} if no further tail is required.
@end deffn
@node List Modification
@subsubsection List Modification
The following procedures modify an existing list, either by changing
elements of the list, or by changing the list structure itself.
@deffn {Scheme Procedure} list-set! list k val
@deffnx {C Function} scm_list_set_x (list, k, val)
Set the @var{k}th element of @var{list} to @var{val}.
@end deffn
@deffn {Scheme Procedure} list-cdr-set! list k val
@deffnx {C Function} scm_list_cdr_set_x (list, k, val)
Set the @var{k}th cdr of @var{list} to @var{val}.
@end deffn
@deffn {Scheme Procedure} delq item lst
@deffnx {C Function} scm_delq (item, lst)
Return a newly-created copy of @var{lst} with elements
@code{eq?} to @var{item} removed. This procedure mirrors
@code{memq}: @code{delq} compares elements of @var{lst} against
@var{item} with @code{eq?}.
@end deffn
@deffn {Scheme Procedure} delv item lst
@deffnx {C Function} scm_delv (item, lst)
Return a newly-created copy of @var{lst} with elements
@code{eqv?} to @var{item} removed. This procedure mirrors
@code{memv}: @code{delv} compares elements of @var{lst} against
@var{item} with @code{eqv?}.
@end deffn
@deffn {Scheme Procedure} delete item lst
@deffnx {C Function} scm_delete (item, lst)
Return a newly-created copy of @var{lst} with elements
@code{equal?} to @var{item} removed. This procedure mirrors
@code{member}: @code{delete} compares elements of @var{lst}
against @var{item} with @code{equal?}.
See also SRFI-1 which has an extended @code{delete} (@ref{SRFI-1
Deleting}), and also an @code{lset-difference} which can delete
multiple @var{item}s in one call (@ref{SRFI-1 Set Operations}).
@end deffn
@deffn {Scheme Procedure} delq! item lst
@deffnx {Scheme Procedure} delv! item lst
@deffnx {Scheme Procedure} delete! item lst
@deffnx {C Function} scm_delq_x (item, lst)
@deffnx {C Function} scm_delv_x (item, lst)
@deffnx {C Function} scm_delete_x (item, lst)
These procedures are destructive versions of @code{delq}, @code{delv}
and @code{delete}: they modify the pointers in the existing @var{lst}
rather than creating a new list. Caveat evaluator: Like other
destructive list functions, these functions cannot modify the binding of
@var{lst}, and so cannot be used to delete the first element of
@var{lst} destructively.
@end deffn
@deffn {Scheme Procedure} delq1! item lst
@deffnx {C Function} scm_delq1_x (item, lst)
Like @code{delq!}, but only deletes the first occurrence of
@var{item} from @var{lst}. Tests for equality using
@code{eq?}. See also @code{delv1!} and @code{delete1!}.
@end deffn
@deffn {Scheme Procedure} delv1! item lst
@deffnx {C Function} scm_delv1_x (item, lst)
Like @code{delv!}, but only deletes the first occurrence of
@var{item} from @var{lst}. Tests for equality using
@code{eqv?}. See also @code{delq1!} and @code{delete1!}.
@end deffn
@deffn {Scheme Procedure} delete1! item lst
@deffnx {C Function} scm_delete1_x (item, lst)
Like @code{delete!}, but only deletes the first occurrence of
@var{item} from @var{lst}. Tests for equality using
@code{equal?}. See also @code{delq1!} and @code{delv1!}.
@end deffn
@deffn {Scheme Procedure} filter pred lst
@deffnx {Scheme Procedure} filter! pred lst
Return a list containing all elements from @var{lst} which satisfy the
predicate @var{pred}. The elements in the result list have the same
order as in @var{lst}. The order in which @var{pred} is applied to
the list elements is not specified.
@code{filter} does not change @var{lst}, but the result may share a
tail with it. @code{filter!} may modify @var{lst} to construct its
return.
@end deffn
@node List Searching
@subsubsection List Searching
The following procedures search lists for particular elements. They use
different comparison predicates for comparing list elements with the
object to be searched. When they fail, they return @code{#f}, otherwise
they return the sublist whose car is equal to the search object, where
equality depends on the equality predicate used.
@rnindex memq
@deffn {Scheme Procedure} memq x lst
@deffnx {C Function} scm_memq (x, lst)
Return the first sublist of @var{lst} whose car is @code{eq?}
to @var{x} where the sublists of @var{lst} are the non-empty
lists returned by @code{(list-tail @var{lst} @var{k})} for
@var{k} less than the length of @var{lst}. If @var{x} does not
occur in @var{lst}, then @code{#f} (not the empty list) is
returned.
@end deffn
@rnindex memv
@deffn {Scheme Procedure} memv x lst
@deffnx {C Function} scm_memv (x, lst)
Return the first sublist of @var{lst} whose car is @code{eqv?}
to @var{x} where the sublists of @var{lst} are the non-empty
lists returned by @code{(list-tail @var{lst} @var{k})} for
@var{k} less than the length of @var{lst}. If @var{x} does not
occur in @var{lst}, then @code{#f} (not the empty list) is
returned.
@end deffn
@rnindex member
@deffn {Scheme Procedure} member x lst
@deffnx {C Function} scm_member (x, lst)
Return the first sublist of @var{lst} whose car is
@code{equal?} to @var{x} where the sublists of @var{lst} are
the non-empty lists returned by @code{(list-tail @var{lst}
@var{k})} for @var{k} less than the length of @var{lst}. If
@var{x} does not occur in @var{lst}, then @code{#f} (not the
empty list) is returned.
See also SRFI-1 which has an extended @code{member} function
(@ref{SRFI-1 Searching}).
@end deffn
@node List Mapping
@subsubsection List Mapping
List processing is very convenient in Scheme because the process of
iterating over the elements of a list can be highly abstracted. The
procedures in this section are the most basic iterating procedures for
lists. They take a procedure and one or more lists as arguments, and
apply the procedure to each element of the list. They differ in their
return value.
@rnindex map
@c begin (texi-doc-string "guile" "map")
@deffn {Scheme Procedure} map proc arg1 arg2 @dots{}
@deffnx {Scheme Procedure} map-in-order proc arg1 arg2 @dots{}
@deffnx {C Function} scm_map (proc, arg1, args)
Apply @var{proc} to each element of the list @var{arg1} (if only two
arguments are given), or to the corresponding elements of the argument
lists (if more than two arguments are given). The result(s) of the
procedure applications are saved and returned in a list. For
@code{map}, the order of procedure applications is not specified,
@code{map-in-order} applies the procedure from left to right to the list
elements.
@end deffn
@rnindex for-each
@c begin (texi-doc-string "guile" "for-each")
@deffn {Scheme Procedure} for-each proc arg1 arg2 @dots{}
Like @code{map}, but the procedure is always applied from left to right,
and the result(s) of the procedure applications are thrown away. The
return value is not specified.
@end deffn
See also SRFI-1 which extends these functions to take lists of unequal
lengths (@ref{SRFI-1 Fold and Map}).
@node Vectors
@subsection Vectors
@tpindex Vectors
Vectors are sequences of Scheme objects. Unlike lists, the length of a
vector, once the vector is created, cannot be changed. The advantage of
vectors over lists is that the time required to access one element of a vector
given its @dfn{position} (synonymous with @dfn{index}), a zero-origin number,
is constant, whereas lists have an access time linear to the position of the
accessed element in the list.
Vectors can contain any kind of Scheme object; it is even possible to
have different types of objects in the same vector. For vectors
containing vectors, you may wish to use arrays, instead. Note, too,
that vectors are the special case of one dimensional non-uniform arrays
and that most array procedures operate happily on vectors
(@pxref{Arrays}).
@menu
* Vector Syntax:: Read syntax for vectors.
* Vector Creation:: Dynamic vector creation and validation.
* Vector Accessors:: Accessing and modifying vector contents.
* Vector Accessing from C:: Ways to work with vectors from C.
* Uniform Numeric Vectors:: Vectors of unboxed numeric values.
@end menu
@node Vector Syntax
@subsubsection Read Syntax for Vectors
Vectors can literally be entered in source code, just like strings,
characters or some of the other data types. The read syntax for vectors
is as follows: A sharp sign (@code{#}), followed by an opening
parentheses, all elements of the vector in their respective read syntax,
and finally a closing parentheses. Like strings, vectors do not have to
be quoted.
The following are examples of the read syntax for vectors; where the
first vector only contains numbers and the second three different object
types: a string, a symbol and a number in hexadecimal notation.
@lisp
#(1 2 3)
#("Hello" foo #xdeadbeef)
@end lisp
@node Vector Creation
@subsubsection Dynamic Vector Creation and Validation
Instead of creating a vector implicitly by using the read syntax just
described, you can create a vector dynamically by calling one of the
@code{vector} and @code{list->vector} primitives with the list of Scheme
values that you want to place into a vector. The size of the vector
thus created is determined implicitly by the number of arguments given.
@rnindex vector
@rnindex list->vector
@deffn {Scheme Procedure} vector arg @dots{}
@deffnx {Scheme Procedure} list->vector l
@deffnx {C Function} scm_vector (l)
Return a newly allocated vector composed of the
given arguments. Analogous to @code{list}.
@lisp
(vector 'a 'b 'c) @result{} #(a b c)
@end lisp
@end deffn
The inverse operation is @code{vector->list}:
@rnindex vector->list
@deffn {Scheme Procedure} vector->list v
@deffnx {C Function} scm_vector_to_list (v)
Return a newly allocated list composed of the elements of @var{v}.
@lisp
(vector->list #(dah dah didah)) @result{} (dah dah didah)
(list->vector '(dididit dah)) @result{} #(dididit dah)
@end lisp
@end deffn
To allocate a vector with an explicitly specified size, use
@code{make-vector}. With this primitive you can also specify an initial
value for the vector elements (the same value for all elements, that
is):
@rnindex make-vector
@deffn {Scheme Procedure} make-vector len [fill]
@deffnx {C Function} scm_make_vector (len, fill)
Return a newly allocated vector of @var{len} elements. If a
second argument is given, then each position is initialized to
@var{fill}. Otherwise the initial contents of each position is
unspecified.
@end deffn
@deftypefn {C Function} SCM scm_c_make_vector (size_t k, SCM fill)
Like @code{scm_make_vector}, but the length is given as a @code{size_t}.
@end deftypefn
To check whether an arbitrary Scheme value @emph{is} a vector, use the
@code{vector?} primitive:
@rnindex vector?
@deffn {Scheme Procedure} vector? obj
@deffnx {C Function} scm_vector_p (obj)
Return @code{#t} if @var{obj} is a vector, otherwise return
@code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_vector (SCM obj)
Return non-zero when @var{obj} is a vector, otherwise return
@code{zero}.
@end deftypefn
@node Vector Accessors
@subsubsection Accessing and Modifying Vector Contents
@code{vector-length} and @code{vector-ref} return information about a
given vector, respectively its size and the elements that are contained
in the vector.
@rnindex vector-length
@deffn {Scheme Procedure} vector-length vector
@deffnx {C Function} scm_vector_length (vector)
Return the number of elements in @var{vector} as an exact integer.
@end deffn
@deftypefn {C Function} size_t scm_c_vector_length (SCM vec)
Return the number of elements in @var{vec} as a @code{size_t}.
@end deftypefn
@rnindex vector-ref
@deffn {Scheme Procedure} vector-ref vec k
@deffnx {C Function} scm_vector_ref (vec, k)
Return the contents of position @var{k} of @var{vec}.
@var{k} must be a valid index of @var{vec}.
@lisp
(vector-ref #(1 1 2 3 5 8 13 21) 5) @result{} 8
(vector-ref #(1 1 2 3 5 8 13 21)
(let ((i (round (* 2 (acos -1)))))
(if (inexact? i)
(inexact->exact i)
i))) @result{} 13
@end lisp
@end deffn
@deftypefn {C Function} SCM scm_c_vector_ref (SCM vec, size_t k)
Return the contents of position @var{k} (a @code{size_t}) of
@var{vec}.
@end deftypefn
A vector created by one of the dynamic vector constructor procedures
(@pxref{Vector Creation}) can be modified using the following
procedures.
@emph{NOTE:} According to R5RS, it is an error to use any of these
procedures on a literally read vector, because such vectors should be
considered as constants. Currently, however, Guile does not detect this
error.
@rnindex vector-set!
@deffn {Scheme Procedure} vector-set! vec k obj
@deffnx {C Function} scm_vector_set_x (vec, k, obj)
Store @var{obj} in position @var{k} of @var{vec}.
@var{k} must be a valid index of @var{vec}.
The value returned by @samp{vector-set!} is unspecified.
@lisp
(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec) @result{} #(0 ("Sue" "Sue") "Anna")
@end lisp
@end deffn
@deftypefn {C Function} void scm_c_vector_set_x (SCM vec, size_t k, SCM obj)
Store @var{obj} in position @var{k} (a @code{size_t}) of @var{vec}.
@end deftypefn
@rnindex vector-fill!
@deffn {Scheme Procedure} vector-fill! vec fill
@deffnx {C Function} scm_vector_fill_x (vec, fill)
Store @var{fill} in every position of @var{vec}. The value
returned by @code{vector-fill!} is unspecified.
@end deffn
@deffn {Scheme Procedure} vector-copy vec
@deffnx {C Function} scm_vector_copy (vec)
Return a copy of @var{vec}.
@end deffn
@deffn {Scheme Procedure} vector-move-left! vec1 start1 end1 vec2 start2
@deffnx {C Function} scm_vector_move_left_x (vec1, start1, end1, vec2, start2)
Copy elements from @var{vec1}, positions @var{start1} to @var{end1},
to @var{vec2} starting at position @var{start2}. @var{start1} and
@var{start2} are inclusive indices; @var{end1} is exclusive.
@code{vector-move-left!} copies elements in leftmost order.
Therefore, in the case where @var{vec1} and @var{vec2} refer to the
same vector, @code{vector-move-left!} is usually appropriate when
@var{start1} is greater than @var{start2}.
@end deffn
@deffn {Scheme Procedure} vector-move-right! vec1 start1 end1 vec2 start2
@deffnx {C Function} scm_vector_move_right_x (vec1, start1, end1, vec2, start2)
Copy elements from @var{vec1}, positions @var{start1} to @var{end1},
to @var{vec2} starting at position @var{start2}. @var{start1} and
@var{start2} are inclusive indices; @var{end1} is exclusive.
@code{vector-move-right!} copies elements in rightmost order.
Therefore, in the case where @var{vec1} and @var{vec2} refer to the
same vector, @code{vector-move-right!} is usually appropriate when
@var{start1} is less than @var{start2}.
@end deffn
@node Vector Accessing from C
@subsubsection Vector Accessing from C
A vector can be read and modified from C with the functions
@code{scm_c_vector_ref} and @code{scm_c_vector_set_x}, for example. In
addition to these functions, there are two more ways to access vectors
from C that might be more efficient in certain situations: you can
restrict yourself to @dfn{simple vectors} and then use the very fast
@emph{simple vector macros}; or you can use the very general framework
for accessing all kinds of arrays (@pxref{Accessing Arrays from C}),
which is more verbose, but can deal efficiently with all kinds of
vectors (and arrays). For vectors, you can use the
@code{scm_vector_elements} and @code{scm_vector_writable_elements}
functions as shortcuts.
@deftypefn {C Function} int scm_is_simple_vector (SCM obj)
Return non-zero if @var{obj} is a simple vector, else return zero. A
simple vector is a vector that can be used with the @code{SCM_SIMPLE_*}
macros below.
The following functions are guaranteed to return simple vectors:
@code{scm_make_vector}, @code{scm_c_make_vector}, @code{scm_vector},
@code{scm_list_to_vector}.
@end deftypefn
@deftypefn {C Macro} size_t SCM_SIMPLE_VECTOR_LENGTH (SCM vec)
Evaluates to the length of the simple vector @var{vec}. No type
checking is done.
@end deftypefn
@deftypefn {C Macro} SCM SCM_SIMPLE_VECTOR_REF (SCM vec, size_t idx)
Evaluates to the element at position @var{idx} in the simple vector
@var{vec}. No type or range checking is done.
@end deftypefn
@deftypefn {C Macro} void SCM_SIMPLE_VECTOR_SET (SCM vec, size_t idx, SCM val)
Sets the element at position @var{idx} in the simple vector
@var{vec} to @var{val}. No type or range checking is done.
@end deftypefn
@deftypefn {C Function} {const SCM *} scm_vector_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Acquire a handle for the vector @var{vec} and return a pointer to the
elements of it. This pointer can only be used to read the elements of
@var{vec}. When @var{vec} is not a vector, an error is signaled. The
handle must eventually be released with
@code{scm_array_handle_release}.
The variables pointed to by @var{lenp} and @var{incp} are filled with
the number of elements of the vector and the increment (number of
elements) between successive elements, respectively. Successive
elements of @var{vec} need not be contiguous in their underlying
``root vector'' returned here; hence the increment is not necessarily
equal to 1 and may well be negative too (@pxref{Shared Arrays}).
The following example shows the typical way to use this function. It
creates a list of all elements of @var{vec} (in reverse order).
@example
scm_t_array_handle handle;
size_t i, len;
ssize_t inc;
const SCM *elt;
SCM list;
elt = scm_vector_elements (vec, &handle, &len, &inc);
list = SCM_EOL;
for (i = 0; i < len; i++, elt += inc)
list = scm_cons (*elt, list);
scm_array_handle_release (&handle);
@end example
@end deftypefn
@deftypefn {C Function} {SCM *} scm_vector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_elements} but the pointer can be used to modify
the vector.
The following example shows the typical way to use this function. It
fills a vector with @code{#t}.
@example
scm_t_array_handle handle;
size_t i, len;
ssize_t inc;
SCM *elt;
elt = scm_vector_writable_elements (vec, &handle, &len, &inc);
for (i = 0; i < len; i++, elt += inc)
*elt = SCM_BOOL_T;
scm_array_handle_release (&handle);
@end example
@end deftypefn
@node Uniform Numeric Vectors
@subsubsection Uniform Numeric Vectors
A uniform numeric vector is a vector whose elements are all of a single
numeric type. Guile offers uniform numeric vectors for signed and
unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of
floating point values, and complex floating-point numbers of these two
sizes. @xref{SRFI-4}, for more information.
For many purposes, bytevectors work just as well as uniform vectors, and have
the advantage that they integrate well with binary input and output.
@xref{Bytevectors}, for more information on bytevectors.
@node Bit Vectors
@subsection Bit Vectors
@noindent
Bit vectors are zero-origin, one-dimensional arrays of booleans. They
are displayed as a sequence of @code{0}s and @code{1}s prefixed by
@code{#*}, e.g.,
@example
(make-bitvector 8 #f) @result{}
#*00000000
@end example
Bit vectors are the special case of one dimensional bit arrays, and can
thus be used with the array procedures, @xref{Arrays}.
@deffn {Scheme Procedure} bitvector? obj
@deffnx {C Function} scm_bitvector_p (obj)
Return @code{#t} when @var{obj} is a bitvector, else
return @code{#f}.
@end deffn
@deftypefn {C Function} int scm_is_bitvector (SCM obj)
Return @code{1} when @var{obj} is a bitvector, else return @code{0}.
@end deftypefn
@deffn {Scheme Procedure} make-bitvector len [fill]
@deffnx {C Function} scm_make_bitvector (len, fill)
Create a new bitvector of length @var{len} and
optionally initialize all elements to @var{fill}.
@end deffn
@deftypefn {C Function} SCM scm_c_make_bitvector (size_t len, SCM fill)
Like @code{scm_make_bitvector}, but the length is given as a
@code{size_t}.
@end deftypefn
@deffn {Scheme Procedure} bitvector bit @dots{}
@deffnx {C Function} scm_bitvector (bits)
Create a new bitvector with the arguments as elements.
@end deffn
@deffn {Scheme Procedure} bitvector-length vec
@deffnx {C Function} scm_bitvector_length (vec)
Return the length of the bitvector @var{vec}.
@end deffn
@deftypefn {C Function} size_t scm_c_bitvector_length (SCM vec)
Like @code{scm_bitvector_length}, but the length is returned as a
@code{size_t}.
@end deftypefn
@deffn {Scheme Procedure} bitvector-ref vec idx
@deffnx {C Function} scm_bitvector_ref (vec, idx)
Return the element at index @var{idx} of the bitvector
@var{vec}.
@end deffn
@deftypefn {C Function} SCM scm_c_bitvector_ref (SCM vec, size_t idx)
Return the element at index @var{idx} of the bitvector
@var{vec}.
@end deftypefn
@deffn {Scheme Procedure} bitvector-set! vec idx val
@deffnx {C Function} scm_bitvector_set_x (vec, idx, val)
Set the element at index @var{idx} of the bitvector
@var{vec} when @var{val} is true, else clear it.
@end deffn
@deftypefn {C Function} SCM scm_c_bitvector_set_x (SCM vec, size_t idx, SCM val)
Set the element at index @var{idx} of the bitvector
@var{vec} when @var{val} is true, else clear it.
@end deftypefn
@deffn {Scheme Procedure} bitvector-fill! vec val
@deffnx {C Function} scm_bitvector_fill_x (vec, val)
Set all elements of the bitvector
@var{vec} when @var{val} is true, else clear them.
@end deffn
@deffn {Scheme Procedure} list->bitvector list
@deffnx {C Function} scm_list_to_bitvector (list)
Return a new bitvector initialized with the elements
of @var{list}.
@end deffn
@deffn {Scheme Procedure} bitvector->list vec
@deffnx {C Function} scm_bitvector_to_list (vec)
Return a new list initialized with the elements
of the bitvector @var{vec}.
@end deffn
@deffn {Scheme Procedure} bit-count bool bitvector
@deffnx {C Function} scm_bit_count (bool, bitvector)
Return a count of how many entries in @var{bitvector} are equal to
@var{bool}. For example,
@example
(bit-count #f #*000111000) @result{} 6
@end example
@end deffn
@deffn {Scheme Procedure} bit-position bool bitvector start
@deffnx {C Function} scm_bit_position (bool, bitvector, start)
Return the index of the first occurrence of @var{bool} in
@var{bitvector}, starting from @var{start}. If there is no @var{bool}
entry between @var{start} and the end of @var{bitvector}, then return
@code{#f}. For example,
@example
(bit-position #t #*000101 0) @result{} 3
(bit-position #f #*0001111 3) @result{} #f
@end example
@end deffn
@deffn {Scheme Procedure} bit-invert! bitvector
@deffnx {C Function} scm_bit_invert_x (bitvector)
Modify @var{bitvector} by replacing each element with its negation.
@end deffn
@deffn {Scheme Procedure} bit-set*! bitvector uvec bool
@deffnx {C Function} scm_bit_set_star_x (bitvector, uvec, bool)
Set entries of @var{bitvector} to @var{bool}, with @var{uvec}
selecting the entries to change. The return value is unspecified.
If @var{uvec} is a bit vector, then those entries where it has
@code{#t} are the ones in @var{bitvector} which are set to @var{bool}.
@var{uvec} and @var{bitvector} must be the same length. When
@var{bool} is @code{#t} it's like @var{uvec} is OR'ed into
@var{bitvector}. Or when @var{bool} is @code{#f} it can be seen as an
ANDNOT.
@example
(define bv #*01000010)
(bit-set*! bv #*10010001 #t)
bv
@result{} #*11010011
@end example
If @var{uvec} is a uniform vector of unsigned long integers, then
they're indexes into @var{bitvector} which are set to @var{bool}.
@example
(define bv #*01000010)
(bit-set*! bv #u(5 2 7) #t)
bv
@result{} #*01100111
@end example
@end deffn
@deffn {Scheme Procedure} bit-count* bitvector uvec bool
@deffnx {C Function} scm_bit_count_star (bitvector, uvec, bool)
Return a count of how many entries in @var{bitvector} are equal to
@var{bool}, with @var{uvec} selecting the entries to consider.
@var{uvec} is interpreted in the same way as for @code{bit-set*!}
above. Namely, if @var{uvec} is a bit vector then entries which have
@code{#t} there are considered in @var{bitvector}. Or if @var{uvec}
is a uniform vector of unsigned long integers then it's the indexes in
@var{bitvector} to consider.
For example,
@example
(bit-count* #*01110111 #*11001101 #t) @result{} 3
(bit-count* #*01110111 #u(7 0 4) #f) @result{} 2
@end example
@end deffn
@deftypefn {C Function} {const scm_t_uint32 *} scm_bitvector_elements (SCM vec, scm_t_array_handle *handle, size_t *offp, size_t *lenp, ssize_t *incp)
Like @code{scm_vector_elements} (@pxref{Vector Accessing from C}), but
for bitvectors. The variable pointed to by @var{offp} is set to the
value returned by @code{scm_array_handle_bit_elements_offset}. See
@code{scm_array_handle_bit_elements} for how to use the returned
pointer and the offset.
@end deftypefn
@deftypefn {C Function} {scm_t_uint32 *} scm_bitvector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *offp, size_t *lenp, ssize_t *incp)
Like @code{scm_bitvector_elements}, but the pointer is good for reading
and writing.
@end deftypefn
@node Arrays
@subsection Arrays
@tpindex Arrays
@dfn{Arrays} are a collection of cells organized into an arbitrary
number of dimensions. Each cell can be accessed in constant time by
supplying an index for each dimension.
In the current implementation, an array uses a vector of some kind for
the actual storage of its elements. Any kind of vector will do, so you
can have arrays of uniform numeric values, arrays of characters, arrays
of bits, and of course, arrays of arbitrary Scheme values. For example,
arrays with an underlying @code{c64vector} might be nice for digital
signal processing, while arrays made from a @code{u8vector} might be
used to hold gray-scale images.
The number of dimensions of an array is called its @dfn{rank}. Thus,
a matrix is an array of rank 2, while a vector has rank 1. When
accessing an array element, you have to specify one exact integer for
each dimension. These integers are called the @dfn{indices} of the
element. An array specifies the allowed range of indices for each
dimension via an inclusive lower and upper bound. These bounds can
well be negative, but the upper bound must be greater than or equal to
the lower bound minus one. When all lower bounds of an array are
zero, it is called a @dfn{zero-origin} array.
Arrays can be of rank 0, which could be interpreted as a scalar.
Thus, a zero-rank array can store exactly one object and the list of
indices of this element is the empty list.
Arrays contain zero elements when one of their dimensions has a zero
length. These empty arrays maintain information about their shape: a
matrix with zero columns and 3 rows is different from a matrix with 3
columns and zero rows, which again is different from a vector of
length zero.
The array procedures are all polymorphic, treating strings, uniform
numeric vectors, bytevectors, bit vectors and ordinary vectors as one
dimensional arrays.
@menu
* Array Syntax::
* Array Procedures::
* Shared Arrays::
* Accessing Arrays from C::
@end menu
@node Array Syntax
@subsubsection Array Syntax
An array is displayed as @code{#} followed by its rank, followed by a
tag that describes the underlying vector, optionally followed by
information about its shape, and finally followed by the cells,
organized into dimensions using parentheses.
In more words, the array tag is of the form
@example
#<rank><vectag><@@lower><:len><@@lower><:len>...
@end example
where @code{<rank>} is a positive integer in decimal giving the rank of
the array. It is omitted when the rank is 1 and the array is non-shared
and has zero-origin (see below). For shared arrays and for a non-zero
origin, the rank is always printed even when it is 1 to distinguish
them from ordinary vectors.
The @code{<vectag>} part is the tag for a uniform numeric vector, like
@code{u8}, @code{s16}, etc, @code{b} for bitvectors, or @code{a} for
strings. It is empty for ordinary vectors.
The @code{<@@lower>} part is a @samp{@@} character followed by a signed
integer in decimal giving the lower bound of a dimension. There is one
@code{<@@lower>} for each dimension. When all lower bounds are zero,
all @code{<@@lower>} parts are omitted.
The @code{<:len>} part is a @samp{:} character followed by an unsigned
integer in decimal giving the length of a dimension. Like for the lower
bounds, there is one @code{<:len>} for each dimension, and the
@code{<:len>} part always follows the @code{<@@lower>} part for a
dimension. Lengths are only then printed when they can't be deduced
from the nested lists of elements of the array literal, which can happen
when at least one length is zero.
As a special case, an array of rank 0 is printed as
@code{#0<vectag>(<scalar>)}, where @code{<scalar>} is the result of
printing the single element of the array.
Thus,
@table @code
@item #(1 2 3)
is an ordinary array of rank 1 with lower bound 0 in dimension 0.
(I.e., a regular vector.)
@item #@@2(1 2 3)
is an ordinary array of rank 1 with lower bound 2 in dimension 0.
@item #2((1 2 3) (4 5 6))
is a non-uniform array of rank 2; a 3@cross{}3 matrix with index ranges 0..2
and 0..2.
@item #u32(0 1 2)
is a uniform u8 array of rank 1.
@item #2u32@@2@@3((1 2) (2 3))
is a uniform u8 array of rank 2 with index ranges 2..3 and 3..4.
@item #2()
is a two-dimensional array with index ranges 0..-1 and 0..-1, i.e.@:
both dimensions have length zero.
@item #2:0:2()
is a two-dimensional array with index ranges 0..-1 and 0..1, i.e.@: the
first dimension has length zero, but the second has length 2.
@item #0(12)
is a rank-zero array with contents 12.
@end table
In addition, bytevectors are also arrays, but use a different syntax
(@pxref{Bytevectors}):
@table @code
@item #vu8(1 2 3)
is a 3-byte long bytevector, with contents 1, 2, 3.
@end table
@node Array Procedures
@subsubsection Array Procedures
When an array is created, the range of each dimension must be
specified, e.g., to create a 2@cross{}3 array with a zero-based index:
@example
(make-array 'ho 2 3) @result{} #2((ho ho ho) (ho ho ho))
@end example
The range of each dimension can also be given explicitly, e.g., another
way to create the same array:
@example
(make-array 'ho '(0 1) '(0 2)) @result{} #2((ho ho ho) (ho ho ho))
@end example
The following procedures can be used with arrays (or vectors). An
argument shown as @var{idx}@dots{} means one parameter for each
dimension in the array. A @var{idxlist} argument means a list of such
values, one for each dimension.
@deffn {Scheme Procedure} array? obj
@deffnx {C Function} scm_array_p (obj, unused)
Return @code{#t} if the @var{obj} is an array, and @code{#f} if
not.
The second argument to scm_array_p is there for historical reasons,
but it is not used. You should always pass @code{SCM_UNDEFINED} as
its value.
@end deffn
@deffn {Scheme Procedure} typed-array? obj type
@deffnx {C Function} scm_typed_array_p (obj, type)
Return @code{#t} if the @var{obj} is an array of type @var{type}, and
@code{#f} if not.
@end deffn
@deftypefn {C Function} int scm_is_array (SCM obj)
Return @code{1} if the @var{obj} is an array and @code{0} if not.
@end deftypefn
@deftypefn {C Function} int scm_is_typed_array (SCM obj, SCM type)
Return @code{0} if the @var{obj} is an array of type @var{type}, and
@code{1} if not.
@end deftypefn
@deffn {Scheme Procedure} make-array fill bound @dots{}
@deffnx {C Function} scm_make_array (fill, bounds)
Equivalent to @code{(make-typed-array #t @var{fill} @var{bound} ...)}.
@end deffn
@deffn {Scheme Procedure} make-typed-array type fill bound @dots{}
@deffnx {C Function} scm_make_typed_array (type, fill, bounds)
Create and return an array that has as many dimensions as there are
@var{bound}s and (maybe) fill it with @var{fill}.
The underlying storage vector is created according to @var{type},
which must be a symbol whose name is the `vectag' of the array as
explained above, or @code{#t} for ordinary, non-specialized arrays.
For example, using the symbol @code{f64} for @var{type} will create an
array that uses a @code{f64vector} for storing its elements, and
@code{a} will use a string.
When @var{fill} is not the special @emph{unspecified} value, the new
array is filled with @var{fill}. Otherwise, the initial contents of
the array is unspecified. The special @emph{unspecified} value is
stored in the variable @code{*unspecified*} so that for example
@code{(make-typed-array 'u32 *unspecified* 4)} creates a uninitialized
@code{u32} vector of length 4.
Each @var{bound} may be a positive non-zero integer @var{n}, in which
case the index for that dimension can range from 0 through @var{n}-1; or
an explicit index range specifier in the form @code{(LOWER UPPER)},
where both @var{lower} and @var{upper} are integers, possibly less than
zero, and possibly the same number (however, @var{lower} cannot be
greater than @var{upper}).
@end deffn
@deffn {Scheme Procedure} list->array dimspec list
Equivalent to @code{(list->typed-array #t @var{dimspec}
@var{list})}.
@end deffn
@deffn {Scheme Procedure} list->typed-array type dimspec list
@deffnx {C Function} scm_list_to_typed_array (type, dimspec, list)
Return an array of the type indicated by @var{type} with elements the
same as those of @var{list}.
The argument @var{dimspec} determines the number of dimensions of the
array and their lower bounds. When @var{dimspec} is an exact integer,
it gives the number of dimensions directly and all lower bounds are
zero. When it is a list of exact integers, then each element is the
lower index bound of a dimension, and there will be as many dimensions
as elements in the list.
@end deffn
@deffn {Scheme Procedure} array-type array
@deffnx {C Function} scm_array_type (array)
Return the type of @var{array}. This is the `vectag' used for
printing @var{array} (or @code{#t} for ordinary arrays) and can be
used with @code{make-typed-array} to create an array of the same kind
as @var{array}.
@end deffn
@deffn {Scheme Procedure} array-ref array idx @dots{}
@deffnx {C Function} scm_array_ref (array, idxlist)
Return the element at @code{(idx @dots{})} in @var{array}.
@example
(define a (make-array 999 '(1 2) '(3 4)))
(array-ref a 2 4) @result{} 999
@end example
@end deffn
@deffn {Scheme Procedure} array-in-bounds? array idx @dots{}
@deffnx {C Function} scm_array_in_bounds_p (array, idxlist)
Return @code{#t} if the given indices would be acceptable to
@code{array-ref}.
@example
(define a (make-array #f '(1 2) '(3 4)))
(array-in-bounds? a 2 3) @result{} #t
(array-in-bounds? a 0 0) @result{} #f
@end example
@end deffn
@deffn {Scheme Procedure} array-set! array obj idx @dots{}
@deffnx {C Function} scm_array_set_x (array, obj, idxlist)
Set the element at @code{(idx @dots{})} in @var{array} to @var{obj}.
The return value is unspecified.
@example
(define a (make-array #f '(0 1) '(0 1)))
(array-set! a #t 1 1)
a @result{} #2((#f #f) (#f #t))
@end example
@end deffn
@deffn {Scheme Procedure} array-shape array
@deffnx {Scheme Procedure} array-dimensions array
@deffnx {C Function} scm_array_dimensions (array)
Return a list of the bounds for each dimension of @var{array}.
@code{array-shape} gives @code{(@var{lower} @var{upper})} for each
dimension. @code{array-dimensions} instead returns just
@math{@var{upper}+1} for dimensions with a 0 lower bound. Both are
suitable as input to @code{make-array}.
For example,
@example
(define a (make-array 'foo '(-1 3) 5))
(array-shape a) @result{} ((-1 3) (0 4))
(array-dimensions a) @result{} ((-1 3) 5)
@end example
@end deffn
@deffn {Scheme Procedure} array-length array
@deffnx {C Function} scm_array_length (array)
@deffnx {C Function} size_t scm_c_array_length (array)
Return the length of an array: its first dimension. It is an error to
ask for the length of an array of rank 0.
@end deffn
@deffn {Scheme Procedure} array-rank array
@deffnx {C Function} scm_array_rank (array)
Return the rank of @var{array}.
@end deffn
@deftypefn {C Function} size_t scm_c_array_rank (SCM array)
Return the rank of @var{array} as a @code{size_t}.
@end deftypefn
@deffn {Scheme Procedure} array->list array
@deffnx {C Function} scm_array_to_list (array)
Return a list consisting of all the elements, in order, of
@var{array}.
@end deffn
@c FIXME: Describe how the order affects the copying (it matters for
@c shared arrays with the same underlying root vector, presumably).
@c
@deffn {Scheme Procedure} array-copy! src dst
@deffnx {Scheme Procedure} array-copy-in-order! src dst
@deffnx {C Function} scm_array_copy_x (src, dst)
Copy every element from vector or array @var{src} to the corresponding
element of @var{dst}. @var{dst} must have the same rank as @var{src},
and be at least as large in each dimension. The return value is
unspecified.
@end deffn
@deffn {Scheme Procedure} array-fill! array fill
@deffnx {C Function} scm_array_fill_x (array, fill)
Store @var{fill} in every element of @var{array}. The value returned
is unspecified.
@end deffn
@c begin (texi-doc-string "guile" "array-equal?")
@deffn {Scheme Procedure} array-equal? array @dots{}
Return @code{#t} if all arguments are arrays with the same shape, the
same type, and have corresponding elements which are either
@code{equal?} or @code{array-equal?}. This function differs from
@code{equal?} (@pxref{Equality}) in that all arguments must be arrays.
@end deffn
@c FIXME: array-map! accepts no source arrays at all, and in that
@c case makes calls "(proc)". Is that meant to be a documented
@c feature?
@c
@c FIXME: array-for-each doesn't say what happens if the sources have
@c different index ranges. The code currently iterates over the
@c indices of the first and expects the others to cover those. That
@c at least vaguely matches array-map!, but is it meant to be a
@c documented feature?
@deffn {Scheme Procedure} array-map! dst proc src @dots{}
@deffnx {Scheme Procedure} array-map-in-order! dst proc src1 @dots{} srcN
@deffnx {C Function} scm_array_map_x (dst, proc, srclist)
Set each element of the @var{dst} array to values obtained from calls
to @var{proc}. The value returned is unspecified.
Each call is @code{(@var{proc} @var{elem1} @dots{} @var{elemN})},
where each @var{elem} is from the corresponding @var{src} array, at
the @var{dst} index. @code{array-map-in-order!} makes the calls in
row-major order, @code{array-map!} makes them in an unspecified order.
The @var{src} arrays must have the same number of dimensions as
@var{dst}, and must have a range for each dimension which covers the
range in @var{dst}. This ensures all @var{dst} indices are valid in
each @var{src}.
@end deffn
@deffn {Scheme Procedure} array-for-each proc src1 src2 @dots{}
@deffnx {C Function} scm_array_for_each (proc, src1, srclist)
Apply @var{proc} to each tuple of elements of @var{src1} @var{src2}
@dots{}, in row-major order. The value returned is unspecified.
@end deffn
@deffn {Scheme Procedure} array-index-map! dst proc
@deffnx {C Function} scm_array_index_map_x (dst, proc)
Set each element of the @var{dst} array to values returned by calls to
@var{proc}. The value returned is unspecified.
Each call is @code{(@var{proc} @var{i1} @dots{} @var{iN})}, where
@var{i1}@dots{}@var{iN} is the destination index, one parameter for
each dimension. The order in which the calls are made is unspecified.
For example, to create a @m{4\times4, 4x4} matrix representing a
cyclic group,
@tex
\advance\leftskip by 2\lispnarrowing {
$\left(\matrix{%
0 & 1 & 2 & 3 \cr
1 & 2 & 3 & 0 \cr
2 & 3 & 0 & 1 \cr
3 & 0 & 1 & 2 \cr
}\right)$} \par
@end tex
@ifnottex
@example
/ 0 1 2 3 \
| 1 2 3 0 |
| 2 3 0 1 |
\ 3 0 1 2 /
@end example
@end ifnottex
@example
(define a (make-array #f 4 4))
(array-index-map! a (lambda (i j)
(modulo (+ i j) 4)))
@end example
@end deffn
@deffn {Scheme Procedure} uniform-array-read! ra [port_or_fd [start [end]]]
@deffnx {C Function} scm_uniform_array_read_x (ra, port_or_fd, start, end)
Attempt to read all elements of array @var{ra}, in lexicographic order, as
binary objects from @var{port_or_fd}.
If an end of file is encountered,
the objects up to that point are put into @var{ra}
(starting at the beginning) and the remainder of the array is
unchanged.
The optional arguments @var{start} and @var{end} allow
a specified region of a vector (or linearized array) to be read,
leaving the remainder of the vector unchanged.
@code{uniform-array-read!} returns the number of objects read.
@var{port_or_fd} may be omitted, in which case it defaults to the value
returned by @code{(current-input-port)}.
@end deffn
@deffn {Scheme Procedure} uniform-array-write ra [port_or_fd [start [end]]]
@deffnx {C Function} scm_uniform_array_write (ra, port_or_fd, start, end)
Writes all elements of @var{ra} as binary objects to
@var{port_or_fd}.
The optional arguments @var{start}
and @var{end} allow
a specified region of a vector (or linearized array) to be written.
The number of objects actually written is returned.
@var{port_or_fd} may be
omitted, in which case it defaults to the value returned by
@code{(current-output-port)}.
@end deffn
@node Shared Arrays
@subsubsection Shared Arrays
@deffn {Scheme Procedure} make-shared-array oldarray mapfunc bound @dots{}
@deffnx {C Function} scm_make_shared_array (oldarray, mapfunc, boundlist)
Return a new array which shares the storage of @var{oldarray}.
Changes made through either affect the same underlying storage. The
@var{bound} @dots{} arguments are the shape of the new array, the same
as @code{make-array} (@pxref{Array Procedures}).
@var{mapfunc} translates coordinates from the new array to the
@var{oldarray}. It's called as @code{(@var{mapfunc} newidx1 @dots{})}
with one parameter for each dimension of the new array, and should
return a list of indices for @var{oldarray}, one for each dimension of
@var{oldarray}.
@var{mapfunc} must be affine linear, meaning that each @var{oldarray}
index must be formed by adding integer multiples (possibly negative)
of some or all of @var{newidx1} etc, plus a possible integer offset.
The multiples and offset must be the same in each call.
@sp 1
One good use for a shared array is to restrict the range of some
dimensions, so as to apply say @code{array-for-each} or
@code{array-fill!} to only part of an array. The plain @code{list}
function can be used for @var{mapfunc} in this case, making no changes
to the index values. For example,
@example
(make-shared-array #2((a b c) (d e f) (g h i)) list 3 2)
@result{} #2((a b) (d e) (g h))
@end example
The new array can have fewer dimensions than @var{oldarray}, for
example to take a column from an array.
@example
(make-shared-array #2((a b c) (d e f) (g h i))
(lambda (i) (list i 2))
'(0 2))
@result{} #1(c f i)
@end example
A diagonal can be taken by using the single new array index for both
row and column in the old array. For example,
@example
(make-shared-array #2((a b c) (d e f) (g h i))
(lambda (i) (list i i))
'(0 2))
@result{} #1(a e i)
@end example
Dimensions can be increased by for instance considering portions of a
one dimensional array as rows in a two dimensional array.
(@code{array-contents} below can do the opposite, flattening an
array.)
@example
(make-shared-array #1(a b c d e f g h i j k l)
(lambda (i j) (list (+ (* i 3) j)))
4 3)
@result{} #2((a b c) (d e f) (g h i) (j k l))
@end example
By negating an index the order that elements appear can be reversed.
The following just reverses the column order,
@example
(make-shared-array #2((a b c) (d e f) (g h i))
(lambda (i j) (list i (- 2 j)))
3 3)
@result{} #2((c b a) (f e d) (i h g))
@end example
A fixed offset on indexes allows for instance a change from a 0 based
to a 1 based array,
@example
(define x #2((a b c) (d e f) (g h i)))
(define y (make-shared-array x
(lambda (i j) (list (1- i) (1- j)))
'(1 3) '(1 3)))
(array-ref x 0 0) @result{} a
(array-ref y 1 1) @result{} a
@end example
A multiple on an index allows every Nth element of an array to be
taken. The following is every third element,
@example
(make-shared-array #1(a b c d e f g h i j k l)
(lambda (i) (list (* i 3)))
4)
@result{} #1(a d g j)
@end example
The above examples can be combined to make weird and wonderful
selections from an array, but it's important to note that because
@var{mapfunc} must be affine linear, arbitrary permutations are not
possible.
In the current implementation, @var{mapfunc} is not called for every
access to the new array but only on some sample points to establish a
base and stride for new array indices in @var{oldarray} data. A few
sample points are enough because @var{mapfunc} is linear.
@end deffn
@deffn {Scheme Procedure} shared-array-increments array
@deffnx {C Function} scm_shared_array_increments (array)
For each dimension, return the distance between elements in the root vector.
@end deffn
@deffn {Scheme Procedure} shared-array-offset array
@deffnx {C Function} scm_shared_array_offset (array)
Return the root vector index of the first element in the array.
@end deffn
@deffn {Scheme Procedure} shared-array-root array
@deffnx {C Function} scm_shared_array_root (array)
Return the root vector of a shared array.
@end deffn
@deffn {Scheme Procedure} array-contents array [strict]
@deffnx {C Function} scm_array_contents (array, strict)
If @var{array} may be @dfn{unrolled} into a one dimensional shared array
without changing their order (last subscript changing fastest), then
@code{array-contents} returns that shared array, otherwise it returns
@code{#f}. All arrays made by @code{make-array} and
@code{make-typed-array} may be unrolled, some arrays made by
@code{make-shared-array} may not be.
If the optional argument @var{strict} is provided, a shared array will
be returned only if its elements are stored internally contiguous in
memory.
@end deffn
@deffn {Scheme Procedure} transpose-array array dim1 dim2 @dots{}
@deffnx {C Function} scm_transpose_array (array, dimlist)
Return an array sharing contents with @var{array}, but with
dimensions arranged in a different order. There must be one
@var{dim} argument for each dimension of @var{array}.
@var{dim1}, @var{dim2}, @dots{} should be integers between 0
and the rank of the array to be returned. Each integer in that
range must appear at least once in the argument list.
The values of @var{dim1}, @var{dim2}, @dots{} correspond to
dimensions in the array to be returned, and their positions in the
argument list to dimensions of @var{array}. Several @var{dim}s
may have the same value, in which case the returned array will
have smaller rank than @var{array}.
@lisp
(transpose-array '#2((a b) (c d)) 1 0) @result{} #2((a c) (b d))
(transpose-array '#2((a b) (c d)) 0 0) @result{} #1(a d)
(transpose-array '#3(((a b c) (d e f)) ((1 2 3) (4 5 6))) 1 1 0) @result{}
#2((a 4) (b 5) (c 6))
@end lisp
@end deffn
@node Accessing Arrays from C
@subsubsection Accessing Arrays from C
For interworking with external C code, Guile provides an API to allow C
code to access the elements of a Scheme array. In particular, for
uniform numeric arrays, the API exposes the underlying uniform data as a
C array of numbers of the relevant type.
While pointers to the elements of an array are in use, the array itself
must be protected so that the pointer remains valid. Such a protected
array is said to be @dfn{reserved}. A reserved array can be read but
modifications to it that would cause the pointer to its elements to
become invalid are prevented. When you attempt such a modification, an
error is signalled.
(This is similar to locking the array while it is in use, but without
the danger of a deadlock. In a multi-threaded program, you will need
additional synchronization to avoid modifying reserved arrays.)
You must take care to always unreserve an array after reserving it,
even in the presence of non-local exits. If a non-local exit can
happen between these two calls, you should install a dynwind context
that releases the array when it is left (@pxref{Dynamic Wind}).
In addition, array reserving and unreserving must be properly
paired. For instance, when reserving two or more arrays in a certain
order, you need to unreserve them in the opposite order.
Once you have reserved an array and have retrieved the pointer to its
elements, you must figure out the layout of the elements in memory.
Guile allows slices to be taken out of arrays without actually making a
copy, such as making an alias for the diagonal of a matrix that can be
treated as a vector. Arrays that result from such an operation are not
stored contiguously in memory and when working with their elements
directly, you need to take this into account.
The layout of array elements in memory can be defined via a
@emph{mapping function} that computes a scalar position from a vector of
indices. The scalar position then is the offset of the element with the
given indices from the start of the storage block of the array.
In Guile, this mapping function is restricted to be @dfn{affine}: all
mapping functions of Guile arrays can be written as @code{p = b +
c[0]*i[0] + c[1]*i[1] + ... + c[n-1]*i[n-1]} where @code{i[k]} is the
@nicode{k}th index and @code{n} is the rank of the array. For
example, a matrix of size 3x3 would have @code{b == 0}, @code{c[0] ==
3} and @code{c[1] == 1}. When you transpose this matrix (with
@code{transpose-array}, say), you will get an array whose mapping
function has @code{b == 0}, @code{c[0] == 1} and @code{c[1] == 3}.
The function @code{scm_array_handle_dims} gives you (indirect) access to
the coefficients @code{c[k]}.
@c XXX
Note that there are no functions for accessing the elements of a
character array yet. Once the string implementation of Guile has been
changed to use Unicode, we will provide them.
@deftp {C Type} scm_t_array_handle
This is a structure type that holds all information necessary to manage
the reservation of arrays as explained above. Structures of this type
must be allocated on the stack and must only be accessed by the
functions listed below.
@end deftp
@deftypefn {C Function} void scm_array_get_handle (SCM array, scm_t_array_handle *handle)
Reserve @var{array}, which must be an array, and prepare @var{handle} to
be used with the functions below. You must eventually call
@code{scm_array_handle_release} on @var{handle}, and do this in a
properly nested fashion, as explained above. The structure pointed to
by @var{handle} does not need to be initialized before calling this
function.
@end deftypefn
@deftypefn {C Function} void scm_array_handle_release (scm_t_array_handle *handle)
End the array reservation represented by @var{handle}. After a call to
this function, @var{handle} might be used for another reservation.
@end deftypefn
@deftypefn {C Function} size_t scm_array_handle_rank (scm_t_array_handle *handle)
Return the rank of the array represented by @var{handle}.
@end deftypefn
@deftp {C Type} scm_t_array_dim
This structure type holds information about the layout of one dimension
of an array. It includes the following fields:
@table @code
@item ssize_t lbnd
@itemx ssize_t ubnd
The lower and upper bounds (both inclusive) of the permissible index
range for the given dimension. Both values can be negative, but
@var{lbnd} is always less than or equal to @var{ubnd}.
@item ssize_t inc
The distance from one element of this dimension to the next. Note, too,
that this can be negative.
@end table
@end deftp
@deftypefn {C Function} {const scm_t_array_dim *} scm_array_handle_dims (scm_t_array_handle *handle)
Return a pointer to a C vector of information about the dimensions of
the array represented by @var{handle}. This pointer is valid as long as
the array remains reserved. As explained above, the
@code{scm_t_array_dim} structures returned by this function can be used
calculate the position of an element in the storage block of the array
from its indices.
This position can then be used as an index into the C array pointer
returned by the various @code{scm_array_handle_<foo>_elements}
functions, or with @code{scm_array_handle_ref} and
@code{scm_array_handle_set}.
Here is how one can compute the position @var{pos} of an element given
its indices in the vector @var{indices}:
@example
ssize_t indices[RANK];
scm_t_array_dim *dims;
ssize_t pos;
size_t i;
pos = 0;
for (i = 0; i < RANK; i++)
@{
if (indices[i] < dims[i].lbnd || indices[i] > dims[i].ubnd)
out_of_range ();
pos += (indices[i] - dims[i].lbnd) * dims[i].inc;
@}
@end example
@end deftypefn
@deftypefn {C Function} ssize_t scm_array_handle_pos (scm_t_array_handle *handle, SCM indices)
Compute the position corresponding to @var{indices}, a list of
indices. The position is computed as described above for
@code{scm_array_handle_dims}. The number of the indices and their
range is checked and an appropriate error is signalled for invalid
indices.
@end deftypefn
@deftypefn {C Function} SCM scm_array_handle_ref (scm_t_array_handle *handle, ssize_t pos)
Return the element at position @var{pos} in the storage block of the
array represented by @var{handle}. Any kind of array is acceptable. No
range checking is done on @var{pos}.
@end deftypefn
@deftypefn {C Function} void scm_array_handle_set (scm_t_array_handle *handle, ssize_t pos, SCM val)
Set the element at position @var{pos} in the storage block of the array
represented by @var{handle} to @var{val}. Any kind of array is
acceptable. No range checking is done on @var{pos}. An error is
signalled when the array can not store @var{val}.
@end deftypefn
@deftypefn {C Function} {const SCM *} scm_array_handle_elements (scm_t_array_handle *handle)
Return a pointer to the elements of a ordinary array of general Scheme
values (i.e., a non-uniform array) for reading. This pointer is valid
as long as the array remains reserved.
@end deftypefn
@deftypefn {C Function} {SCM *} scm_array_handle_writable_elements (scm_t_array_handle *handle)
Like @code{scm_array_handle_elements}, but the pointer is good for
reading and writing.
@end deftypefn
@deftypefn {C Function} {const void *} scm_array_handle_uniform_elements (scm_t_array_handle *handle)
Return a pointer to the elements of a uniform numeric array for reading.
This pointer is valid as long as the array remains reserved. The size
of each element is given by @code{scm_array_handle_uniform_element_size}.
@end deftypefn
@deftypefn {C Function} {void *} scm_array_handle_uniform_writable_elements (scm_t_array_handle *handle)
Like @code{scm_array_handle_uniform_elements}, but the pointer is good
reading and writing.
@end deftypefn
@deftypefn {C Function} size_t scm_array_handle_uniform_element_size (scm_t_array_handle *handle)
Return the size of one element of the uniform numeric array represented
by @var{handle}.
@end deftypefn
@deftypefn {C Function} {const scm_t_uint8 *} scm_array_handle_u8_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_int8 *} scm_array_handle_s8_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_uint16 *} scm_array_handle_u16_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_int16 *} scm_array_handle_s16_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_uint32 *} scm_array_handle_u32_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_int32 *} scm_array_handle_s32_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_uint64 *} scm_array_handle_u64_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const scm_t_int64 *} scm_array_handle_s64_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const float *} scm_array_handle_f32_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const double *} scm_array_handle_f64_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const float *} scm_array_handle_c32_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {const double *} scm_array_handle_c64_elements (scm_t_array_handle *handle)
Return a pointer to the elements of a uniform numeric array of the
indicated kind for reading. This pointer is valid as long as the array
remains reserved.
The pointers for @code{c32} and @code{c64} uniform numeric arrays point
to pairs of floating point numbers. The even index holds the real part,
the odd index the imaginary part of the complex number.
@end deftypefn
@deftypefn {C Function} {scm_t_uint8 *} scm_array_handle_u8_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_int8 *} scm_array_handle_s8_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_uint16 *} scm_array_handle_u16_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_int16 *} scm_array_handle_s16_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_uint32 *} scm_array_handle_u32_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_int32 *} scm_array_handle_s32_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_uint64 *} scm_array_handle_u64_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {scm_t_int64 *} scm_array_handle_s64_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {float *} scm_array_handle_f32_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {double *} scm_array_handle_f64_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {float *} scm_array_handle_c32_writable_elements (scm_t_array_handle *handle)
@deftypefnx {C Function} {double *} scm_array_handle_c64_writable_elements (scm_t_array_handle *handle)
Like @code{scm_array_handle_<kind>_elements}, but the pointer is good
for reading and writing.
@end deftypefn
@deftypefn {C Function} {const scm_t_uint32 *} scm_array_handle_bit_elements (scm_t_array_handle *handle)
Return a pointer to the words that store the bits of the represented
array, which must be a bit array.
Unlike other arrays, bit arrays have an additional offset that must be
figured into index calculations. That offset is returned by
@code{scm_array_handle_bit_elements_offset}.
To find a certain bit you first need to calculate its position as
explained above for @code{scm_array_handle_dims} and then add the
offset. This gives the absolute position of the bit, which is always a
non-negative integer.
Each word of the bit array storage block contains exactly 32 bits, with
the least significant bit in that word having the lowest absolute
position number. The next word contains the next 32 bits.
Thus, the following code can be used to access a bit whose position
according to @code{scm_array_handle_dims} is given in @var{pos}:
@example
SCM bit_array;
scm_t_array_handle handle;
scm_t_uint32 *bits;
ssize_t pos;
size_t abs_pos;
size_t word_pos, mask;
scm_array_get_handle (&bit_array, &handle);
bits = scm_array_handle_bit_elements (&handle);
pos = ...
abs_pos = pos + scm_array_handle_bit_elements_offset (&handle);
word_pos = abs_pos / 32;
mask = 1L << (abs_pos % 32);
if (bits[word_pos] & mask)
/* bit is set. */
scm_array_handle_release (&handle);
@end example
@end deftypefn
@deftypefn {C Function} {scm_t_uint32 *} scm_array_handle_bit_writable_elements (scm_t_array_handle *handle)
Like @code{scm_array_handle_bit_elements} but the pointer is good for
reading and writing. You must take care not to modify bits outside of
the allowed index range of the array, even for contiguous arrays.
@end deftypefn
@node VLists
@subsection VLists
@cindex vlist
The @code{(ice-9 vlist)} module provides an implementation of the @dfn{VList}
data structure designed by Phil Bagwell in 2002. VLists are immutable lists,
which can contain any Scheme object. They improve on standard Scheme linked
lists in several areas:
@itemize
@item
Random access has typically constant-time complexity.
@item
Computing the length of a VList has time complexity logarithmic in the number of
elements.
@item
VLists use less storage space than standard lists.
@item
VList elements are stored in contiguous regions, which improves memory locality
and leads to more efficient use of hardware caches.
@end itemize
The idea behind VLists is to store vlist elements in increasingly large
contiguous blocks (implemented as vectors here). These blocks are linked to one
another using a pointer to the next block and an offset within that block. The
size of these blocks form a geometric series with ratio
@code{block-growth-factor} (2 by default).
The VList structure also serves as the basis for the @dfn{VList-based hash
lists} or ``vhashes'', an immutable dictionary type (@pxref{VHashes}).
However, the current implementation in @code{(ice-9 vlist)} has several
noteworthy shortcomings:
@itemize
@item
It is @emph{not} thread-safe. Although operations on vlists are all
@dfn{referentially transparent} (i.e., purely functional), adding elements to a
vlist with @code{vlist-cons} mutates part of its internal structure, which makes
it non-thread-safe. This could be fixed, but it would slow down
@code{vlist-cons}.
@item
@code{vlist-cons} always allocates at least as much memory as @code{cons}.
Again, Phil Bagwell describes how to fix it, but that would require tuning the
garbage collector in a way that may not be generally beneficial.
@item
@code{vlist-cons} is a Scheme procedure compiled to bytecode, and it does not
compete with the straightforward C implementation of @code{cons}, and with the
fact that the VM has a special @code{cons} instruction.
@end itemize
We hope to address these in the future.
The programming interface exported by @code{(ice-9 vlist)} is defined below.
Most of it is the same as SRFI-1 with an added @code{vlist-} prefix to function
names.
@deffn {Scheme Procedure} vlist? obj
Return true if @var{obj} is a VList.
@end deffn
@defvr {Scheme Variable} vlist-null
The empty VList. Note that it's possible to create an empty VList not
@code{eq?} to @code{vlist-null}; thus, callers should always use
@code{vlist-null?} when testing whether a VList is empty.
@end defvr
@deffn {Scheme Procedure} vlist-null? vlist
Return true if @var{vlist} is empty.
@end deffn
@deffn {Scheme Procedure} vlist-cons item vlist
Return a new vlist with @var{item} as its head and @var{vlist} as its tail.
@end deffn
@deffn {Scheme Procedure} vlist-head vlist
Return the head of @var{vlist}.
@end deffn
@deffn {Scheme Procedure} vlist-tail vlist
Return the tail of @var{vlist}.
@end deffn
@defvr {Scheme Variable} block-growth-factor
A fluid that defines the growth factor of VList blocks, 2 by default.
@end defvr
The functions below provide the usual set of higher-level list operations.
@deffn {Scheme Procedure} vlist-fold proc init vlist
@deffnx {Scheme Procedure} vlist-fold-right proc init vlist
Fold over @var{vlist}, calling @var{proc} for each element, as for SRFI-1
@code{fold} and @code{fold-right} (@pxref{SRFI-1, @code{fold}}).
@end deffn
@deffn {Scheme Procedure} vlist-ref vlist index
Return the element at index @var{index} in @var{vlist}. This is typically a
constant-time operation.
@end deffn
@deffn {Scheme Procedure} vlist-length vlist
Return the length of @var{vlist}. This is typically logarithmic in the number
of elements in @var{vlist}.
@end deffn
@deffn {Scheme Procedure} vlist-reverse vlist
Return a new @var{vlist} whose content are those of @var{vlist} in reverse
order.
@end deffn
@deffn {Scheme Procedure} vlist-map proc vlist
Map @var{proc} over the elements of @var{vlist} and return a new vlist.
@end deffn
@deffn {Scheme Procedure} vlist-for-each proc vlist
Call @var{proc} on each element of @var{vlist}. The result is unspecified.
@end deffn
@deffn {Scheme Procedure} vlist-drop vlist count
Return a new vlist that does not contain the @var{count} first elements of
@var{vlist}. This is typically a constant-time operation.
@end deffn
@deffn {Scheme Procedure} vlist-take vlist count
Return a new vlist that contains only the @var{count} first elements of
@var{vlist}.
@end deffn
@deffn {Scheme Procedure} vlist-filter pred vlist
Return a new vlist containing all the elements from @var{vlist} that satisfy
@var{pred}.
@end deffn
@deffn {Scheme Procedure} vlist-delete x vlist [equal?]
Return a new vlist corresponding to @var{vlist} without the elements
@var{equal?} to @var{x}.
@end deffn
@deffn {Scheme Procedure} vlist-unfold p f g seed [tail-gen]
@deffnx {Scheme Procedure} vlist-unfold-right p f g seed [tail]
Return a new vlist, as for SRFI-1 @code{unfold} and @code{unfold-right}
(@pxref{SRFI-1, @code{unfold}}).
@end deffn
@deffn {Scheme Procedure} vlist-append vlist @dots{}
Append the given vlists and return the resulting vlist.
@end deffn
@deffn {Scheme Procedure} list->vlist lst
Return a new vlist whose contents correspond to @var{lst}.
@end deffn
@deffn {Scheme Procedure} vlist->list vlist
Return a new list whose contents match those of @var{vlist}.
@end deffn
@node Record Overview
@subsection Record Overview
@cindex record
@cindex structure
@dfn{Records}, also called @dfn{structures}, are Scheme's primary
mechanism to define new disjoint types. A @dfn{record type} defines a
list of @dfn{fields} that instances of the type consist of. This is like
C's @code{struct}.
Historically, Guile has offered several different ways to define record
types and to create records, offering different features, and making
different trade-offs. Over the years, each ``standard'' has also come
with its own new record interface, leading to a maze of record APIs.
At the highest level is SRFI-9, a high-level record interface
implemented by most Scheme implementations (@pxref{SRFI-9 Records}). It
defines a simple and efficient syntactic abstraction of record types and
their associated type predicate, fields, and field accessors. SRFI-9 is
suitable for most uses, and this is the recommended way to create record
types in Guile. Similar high-level record APIs include SRFI-35
(@pxref{SRFI-35}) and R6RS records (@pxref{rnrs records syntactic}).
Then comes Guile's historical ``records'' API (@pxref{Records}). Record
types defined this way are first-class objects. Introspection
facilities are available, allowing users to query the list of fields or
the value of a specific field at run-time, without prior knowledge of
the type.
Finally, the common denominator of these interfaces is Guile's
@dfn{structure} API (@pxref{Structures}). Guile's structures are the
low-level building block for all other record APIs. Application writers
will normally not need to use it.
Records created with these APIs may all be pattern-matched using Guile's
standard pattern matcher (@pxref{Pattern Matching}).
@node SRFI-9 Records
@subsection SRFI-9 Records
@cindex SRFI-9
@cindex record
SRFI-9 standardizes a syntax for defining new record types and creating
predicate, constructor, and field getter and setter functions. In Guile
this is the recommended option to create new record types (@pxref{Record
Overview}). It can be used with:
@example
(use-modules (srfi srfi-9))
@end example
@deffn {Scheme Syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
@sp 1
Create a new record type, and make various @code{define}s for using
it. This syntax can only occur at the top-level, not nested within
some other form.
@var{type} is bound to the record type, which is as per the return
from the core @code{make-record-type}. @var{type} also provides the
name for the record, as per @code{record-type-name}.
@var{constructor} is bound to a function to be called as
@code{(@var{constructor} fieldval @dots{})} to create a new record of
this type. The arguments are initial values for the fields, one
argument for each field, in the order they appear in the
@code{define-record-type} form.
The @var{fieldname}s provide the names for the record fields, as per
the core @code{record-type-fields} etc, and are referred to in the
subsequent accessor/modifier forms.
@var{predicate} is bound to a function to be called as
@code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
according to whether @var{obj} is a record of this type.
Each @var{accessor} is bound to a function to be called
@code{(@var{accessor} record)} to retrieve the respective field from a
@var{record}. Similarly each @var{modifier} is bound to a function to
be called @code{(@var{modifier} record val)} to set the respective
field in a @var{record}.
@end deffn
@noindent
An example will illustrate typical usage,
@example
(define-record-type <employee>
(make-employee name age salary)
employee?
(name employee-name)
(age employee-age set-employee-age!)
(salary employee-salary set-employee-salary!))
@end example
This creates a new employee data type, with name, age and salary
fields. Accessor functions are created for each field, but no
modifier function for the name (the intention in this example being
that it's established only when an employee object is created). These
can all then be used as for example,
@example
<employee> @result{} #<record-type <employee>>
(define fred (make-employee "Fred" 45 20000.00))
(employee? fred) @result{} #t
(employee-age fred) @result{} 45
(set-employee-salary! fred 25000.00) ;; pay rise
@end example
The functions created by @code{define-record-type} are ordinary
top-level @code{define}s. They can be redefined or @code{set!} as
desired, exported from a module, etc.
@unnumberedsubsubsec Non-toplevel Record Definitions
The SRFI-9 specification explicitly disallows record definitions in a
non-toplevel context, such as inside @code{lambda} body or inside a
@var{let} block. However, Guile's implementation does not enforce that
restriction.
@unnumberedsubsubsec Custom Printers
You may use @code{set-record-type-printer!} to customize the default printing
behavior of records. This is a Guile extension and is not part of SRFI-9. It
is located in the @nicode{(srfi srfi-9 gnu)} module.
@deffn {Scheme Syntax} set-record-type-printer! name proc
Where @var{type} corresponds to the first argument of @code{define-record-type},
and @var{proc} is a procedure accepting two arguments, the record to print, and
an output port.
@end deffn
@noindent
This example prints the employee's name in brackets, for instance @code{[Fred]}.
@example
(set-record-type-printer! <employee>
(lambda (record port)
(write-char #\[ port)
(display (employee-name record) port)
(write-char #\] port)))
@end example
@unnumberedsubsubsec Functional ``Setters''
@cindex functional setters
When writing code in a functional style, it is desirable to never alter
the contents of records. For such code, a simple way to return new
record instances based on existing ones is highly desirable.
The @code{(srfi srfi-9 gnu)} module extends SRFI-9 with facilities to
return new record instances based on existing ones, only with one or
more field values changed---@dfn{functional setters}. First, the
@code{define-immutable-record-type} works like
@code{define-record-type}, except that fields are immutable and setters
are defined as functional setters.
@deffn {Scheme Syntax} define-immutable-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
Define @var{type} as a new record type, like @code{define-record-type}.
However, the record type is made @emph{immutable} (records may not be
mutated, even with @code{struct-set!}), and any @var{modifier} is
defined to be a functional setter---a procedure that returns a new
record instance with the specified field changed, and leaves the
original unchanged (see example below.)
@end deffn
@noindent
In addition, the generic @code{set-field} and @code{set-fields} macros
may be applied to any SRFI-9 record.
@deffn {Scheme Syntax} set-field record (field sub-fields ...) value
Return a new record of @var{record}'s type whose fields are equal to
the corresponding fields of @var{record} except for the one specified by
@var{field}.
@var{field} must be the name of the getter corresponding to the field of
@var{record} being ``set''. Subsequent @var{sub-fields} must be record
getters designating sub-fields within that field value to be set (see
example below.)
@end deffn
@deffn {Scheme Syntax} set-fields record ((field sub-fields ...) value) ...
Like @code{set-field}, but can be used to set more than one field at a
time. This expands to code that is more efficient than a series of
single @code{set-field} calls.
@end deffn
To illustrate the use of functional setters, let's assume these two
record type definitions:
@example
(define-record-type <address>
(address street city country)
address?
(street address-street)
(city address-city)
(country address-country))
(define-immutable-record-type <person>
(person age email address)
person?
(age person-age set-person-age)
(email person-email set-person-email)
(address person-address set-person-address))
@end example
@noindent
First, note that the @code{<person>} record type definition introduces
named functional setters. These may be used like this:
@example
(define fsf-address
(address "Franklin Street" "Boston" "USA"))
(define rms
(person 30 "rms@@gnu.org" fsf-address))
(and (equal? (set-person-age rms 60)
(person 60 "rms@@gnu.org" fsf-address))
(= (person-age rms) 30))
@result{} #t
@end example
@noindent
Here, the original @code{<person>} record, to which @var{rms} is bound,
is left unchanged.
Now, suppose we want to change both the street and age of @var{rms}.
This can be achieved using @code{set-fields}:
@example
(set-fields rms
((person-age) 60)
((person-address address-street) "Temple Place"))
@result{} #<<person> age: 60 email: "rms@@gnu.org"
address: #<<address> street: "Temple Place" city: "Boston" country: "USA">>
@end example
@noindent
Notice how the above changed two fields of @var{rms}, including the
@code{street} field of its @code{address} field, in a concise way. Also
note that @code{set-fields} works equally well for types defined with
just @code{define-record-type}.
@node Records
@subsection Records
A @dfn{record type} is a first class object representing a user-defined
data type. A @dfn{record} is an instance of a record type.
Note that in many ways, this interface is too low-level for every-day
use. Most uses of records are better served by SRFI-9 records.
@xref{SRFI-9 Records}.
@deffn {Scheme Procedure} record? obj
Return @code{#t} if @var{obj} is a record of any type and @code{#f}
otherwise.
Note that @code{record?} may be true of any Scheme value; there is no
promise that records are disjoint with other Scheme types.
@end deffn
@deffn {Scheme Procedure} make-record-type type-name field-names [print]
Create and return a new @dfn{record-type descriptor}.
@var{type-name} is a string naming the type. Currently it's only used
in the printed representation of records, and in diagnostics.
@var{field-names} is a list of symbols naming the fields of a record
of the type. Duplicates are not allowed among these symbols.
@example
(make-record-type "employee" '(name age salary))
@end example
The optional @var{print} argument is a function used by
@code{display}, @code{write}, etc, for printing a record of the new
type. It's called as @code{(@var{print} record port)} and should look
at @var{record} and write to @var{port}.
@end deffn
@deffn {Scheme Procedure} record-constructor rtd [field-names]
Return a procedure for constructing new members of the type represented
by @var{rtd}. The returned procedure accepts exactly as many arguments
as there are symbols in the given list, @var{field-names}; these are
used, in order, as the initial values of those fields in a new record,
which is returned by the constructor procedure. The values of any
fields not named in that list are unspecified. The @var{field-names}
argument defaults to the list of field names in the call to
@code{make-record-type} that created the type represented by @var{rtd};
if the @var{field-names} argument is provided, it is an error if it
contains any duplicates or any symbols not in the default list.
@end deffn
@deffn {Scheme Procedure} record-predicate rtd
Return a procedure for testing membership in the type represented by
@var{rtd}. The returned procedure accepts exactly one argument and
returns a true value if the argument is a member of the indicated record
type; it returns a false value otherwise.
@end deffn
@deffn {Scheme Procedure} record-accessor rtd field-name
Return a procedure for reading the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly one argument which must be a record of the appropriate
type; it returns the current value of the field named by the symbol
@var{field-name} in that record. The symbol @var{field-name} must be a
member of the list of field-names in the call to @code{make-record-type}
that created the type represented by @var{rtd}.
@end deffn
@deffn {Scheme Procedure} record-modifier rtd field-name
Return a procedure for writing the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly two arguments: first, a record of the appropriate type,
and second, an arbitrary Scheme value; it modifies the field named by
the symbol @var{field-name} in that record to contain the given value.
The returned value of the modifier procedure is unspecified. The symbol
@var{field-name} must be a member of the list of field-names in the call
to @code{make-record-type} that created the type represented by
@var{rtd}.
@end deffn
@deffn {Scheme Procedure} record-type-descriptor record
Return a record-type descriptor representing the type of the given
record. That is, for example, if the returned descriptor were passed to
@code{record-predicate}, the resulting predicate would return a true
value when passed the given record. Note that it is not necessarily the
case that the returned descriptor is the one that was passed to
@code{record-constructor} in the call that created the constructor
procedure that created the given record.
@end deffn
@deffn {Scheme Procedure} record-type-name rtd
Return the type-name associated with the type represented by rtd. The
returned value is @code{eqv?} to the @var{type-name} argument given in
the call to @code{make-record-type} that created the type represented by
@var{rtd}.
@end deffn
@deffn {Scheme Procedure} record-type-fields rtd
Return a list of the symbols naming the fields in members of the type
represented by @var{rtd}. The returned value is @code{equal?} to the
field-names argument given in the call to @code{make-record-type} that
created the type represented by @var{rtd}.
@end deffn
@node Structures
@subsection Structures
@tpindex Structures
A @dfn{structure} is a first class data type which holds Scheme values
or C words in fields numbered 0 upwards. A @dfn{vtable} is a structure
that represents a structure type, giving field types and permissions,
and an optional print function for @code{write} etc.
Structures are lower level than records (@pxref{Records}). Usually,
when you need to represent structured data, you just want to use
records. But sometimes you need to implement new kinds of structured
data abstractions, and for that purpose structures are useful. Indeed,
records in Guile are implemented with structures.
@menu
* Vtables::
* Structure Basics::
* Vtable Contents::
* Meta-Vtables::
* Vtable Example::
* Tail Arrays::
@end menu
@node Vtables
@subsubsection Vtables
A vtable is a structure type, specifying its layout, and other
information. A vtable is actually itself a structure, but there's no
need to worry about that initially (@pxref{Vtable Contents}.)
@deffn {Scheme Procedure} make-vtable fields [print]
Create a new vtable.
@var{fields} is a string describing the fields in the structures to be
created. Each field is represented by two characters, a type letter
and a permissions letter, for example @code{"pw"}. The types are as
follows.
@itemize @bullet{}
@item
@code{p} -- a Scheme value. ``p'' stands for ``protected'' meaning
it's protected against garbage collection.
@item
@code{u} -- an arbitrary word of data (an @code{scm_t_bits}). At the
Scheme level it's read and written as an unsigned integer. ``u''
stands for ``uninterpreted'' (it's not treated as a Scheme value), or
``unprotected'' (it's not marked during GC), or ``unsigned long'' (its
size), or all of these things.
@item
@code{s} -- a self-reference. Such a field holds the @code{SCM} value
of the structure itself (a circular reference). This can be useful in
C code where you might have a pointer to the data array, and want to
get the Scheme @code{SCM} handle for the structure. In Scheme code it
has no use.
@end itemize
The second letter for each field is a permission code,
@itemize @bullet{}
@item
@code{w} -- writable, the field can be read and written.
@item
@code{r} -- read-only, the field can be read but not written.
@item
@code{o} -- opaque, the field can be neither read nor written at the
Scheme level. This can be used for fields which should only be used
from C code.
@end itemize
Here are some examples. @xref{Tail Arrays}, for information on the
legacy tail array facility.
@example
(make-vtable "pw") ;; one writable field
(make-vtable "prpw") ;; one read-only and one writable
(make-vtable "pwuwuw") ;; one scheme and two uninterpreted
@end example
The optional @var{print} argument is a function called by
@code{display} and @code{write} (etc) to give a printed representation
of a structure created from this vtable. It's called
@code{(@var{print} struct port)} and should look at @var{struct} and
write to @var{port}. The default print merely gives a form like
@samp{#<struct ADDR:ADDR>} with a pair of machine addresses.
The following print function for example shows the two fields of its
structure.
@example
(make-vtable "prpw"
(lambda (struct port)
(format port "#<~a and ~a>"
(struct-ref struct 0)
(struct-ref struct 1))))
@end example
@end deffn
@node Structure Basics
@subsubsection Structure Basics
This section describes the basic procedures for working with
structures. @code{make-struct} creates a structure, and
@code{struct-ref} and @code{struct-set!} access its fields.
@deffn {Scheme Procedure} make-struct vtable tail-size init @dots{}
@deffnx {Scheme Procedure} make-struct/no-tail vtable init @dots{}
Create a new structure, with layout per the given @var{vtable}
(@pxref{Vtables}).
The optional @var{init}@dots{} arguments are initial values for the
fields of the structure. This is the only way to
put values in read-only fields. If there are fewer @var{init}
arguments than fields then the defaults are @code{#f} for a Scheme
field (type @code{p}) or 0 for an uninterpreted field (type @code{u}).
Structures also have the ability to allocate a variable number of
additional cells at the end, at their tails. However, this legacy
@dfn{tail array} facilty is confusing and inefficient, and so we do not
recommend it. @xref{Tail Arrays}, for more on the legacy tail array
interface.
Type @code{s} self-reference fields, permission @code{o} opaque
fields, and the count field of a tail array are all ignored for the
@var{init} arguments, ie.@: an argument is not consumed by such a
field. An @code{s} is always set to the structure itself, an @code{o}
is always set to @code{#f} or 0 (with the intention that C code will
do something to it later), and the tail count is always the given
@var{tail-size}.
For example,
@example
(define v (make-vtable "prpwpw"))
(define s (make-struct v 0 123 "abc" 456))
(struct-ref s 0) @result{} 123
(struct-ref s 1) @result{} "abc"
@end example
@end deffn
@deftypefn {C Function} SCM scm_make_struct (SCM vtable, SCM tail_size, SCM init_list)
@deftypefnx {C Function} SCM scm_c_make_struct (SCM vtable, SCM tail_size, SCM init, ...)
@deftypefnx {C Function} SCM scm_c_make_structv (SCM vtable, SCM tail_size, size_t n_inits, scm_t_bits init[])
There are a few ways to make structures from C. @code{scm_make_struct}
takes a list, @code{scm_c_make_struct} takes variable arguments
terminated with SCM_UNDEFINED, and @code{scm_c_make_structv} takes a
packed array.
@end deftypefn
@deffn {Scheme Procedure} struct? obj
@deffnx {C Function} scm_struct_p (obj)
Return @code{#t} if @var{obj} is a structure, or @code{#f} if not.
@end deffn
@deffn {Scheme Procedure} struct-ref struct n
@deffnx {C Function} scm_struct_ref (struct, n)
Return the contents of field number @var{n} in @var{struct}. The
first field is number 0.
An error is thrown if @var{n} is out of range, or if the field cannot
be read because it's @code{o} opaque.
@end deffn
@deffn {Scheme Procedure} struct-set! struct n value
@deffnx {C Function} scm_struct_set_x (struct, n, value)
Set field number @var{n} in @var{struct} to @var{value}. The first
field is number 0.
An error is thrown if @var{n} is out of range, or if the field cannot
be written because it's @code{r} read-only or @code{o} opaque.
@end deffn
@deffn {Scheme Procedure} struct-vtable struct
@deffnx {C Function} scm_struct_vtable (struct)
Return the vtable that describes @var{struct}.
The vtable is effectively the type of the structure. See @ref{Vtable
Contents}, for more on vtables.
@end deffn
@node Vtable Contents
@subsubsection Vtable Contents
A vtable is itself a structure. It has a specific set of fields
describing various aspects of its @dfn{instances}: the structures
created from a vtable. Some of the fields are internal to Guile, some
of them are part of the public interface, and there may be additional
fields added on by the user.
Every vtable has a field for the layout of their instances, a field for
the procedure used to print its instances, and a field for the name of
the vtable itself. Access to the layout and printer is exposed directly
via field indexes. Access to the vtable name is exposed via accessor
procedures.
@defvr {Scheme Variable} vtable-index-layout
@defvrx {C Macro} scm_vtable_index_layout
The field number of the layout specification in a vtable. The layout
specification is a symbol like @code{pwpw} formed from the fields
string passed to @code{make-vtable}, or created by
@code{make-struct-layout} (@pxref{Meta-Vtables}).
@example
(define v (make-vtable "pwpw" 0))
(struct-ref v vtable-index-layout) @result{} pwpw
@end example
This field is read-only, since the layout of structures using a vtable
cannot be changed.
@end defvr
@defvr {Scheme Variable} vtable-index-printer
@defvrx {C Macro} scm_vtable_index_printer
The field number of the printer function. This field contains @code{#f}
if the default print function should be used.
@example
(define (my-print-func struct port)
...)
(define v (make-vtable "pwpw" my-print-func))
(struct-ref v vtable-index-printer) @result{} my-print-func
@end example
This field is writable, allowing the print function to be changed
dynamically.
@end defvr
@deffn {Scheme Procedure} struct-vtable-name vtable
@deffnx {Scheme Procedure} set-struct-vtable-name! vtable name
@deffnx {C Function} scm_struct_vtable_name (vtable)
@deffnx {C Function} scm_set_struct_vtable_name_x (vtable, name)
Get or set the name of @var{vtable}. @var{name} is a symbol and is
used in the default print function when printing structures created
from @var{vtable}.
@example
(define v (make-vtable "pw"))
(set-struct-vtable-name! v 'my-name)
(define s (make-struct v 0))
(display s) @print{} #<my-name b7ab3ae0:b7ab3730>
@end example
@end deffn
@node Meta-Vtables
@subsubsection Meta-Vtables
As a structure, a vtable also has a vtable, which is also a structure.
Structures, their vtables, the vtables of the vtables, and so on form a
tree of structures. Making a new structure adds a leaf to the tree, and
if that structure is a vtable, it may be used to create other leaves.
If you traverse up the tree of vtables, via calling
@code{struct-vtable}, eventually you reach a root which is the vtable of
itself:
@example
scheme@@(guile-user)> (current-module)
$1 = #<directory (guile-user) 221b090>
scheme@@(guile-user)> (struct-vtable $1)
$2 = #<record-type module>
scheme@@(guile-user)> (struct-vtable $2)
$3 = #<<standard-vtable> 12c30a0>
scheme@@(guile-user)> (struct-vtable $3)
$4 = #<<standard-vtable> 12c3fa0>
scheme@@(guile-user)> (struct-vtable $4)
$5 = #<<standard-vtable> 12c3fa0>
scheme@@(guile-user)> <standard-vtable>
$6 = #<<standard-vtable> 12c3fa0>
@end example
In this example, we can say that @code{$1} is an instance of @code{$2},
@code{$2} is an instance of @code{$3}, @code{$3} is an instance of
@code{$4}, and @code{$4}, strangely enough, is an instance of itself.
The value bound to @code{$4} in this console session also bound to
@code{<standard-vtable>} in the default environment.
@defvr {Scheme Variable} <standard-vtable>
A meta-vtable, useful for making new vtables.
@end defvr
All of these values are structures. All but @code{$1} are vtables. As
@code{$2} is an instance of @code{$3}, and @code{$3} is a vtable, we can
say that @code{$3} is a @dfn{meta-vtable}: a vtable that can create
vtables.
With this definition, we can specify more precisely what a vtable is: a
vtable is a structure made from a meta-vtable. Making a structure from
a meta-vtable runs some special checks to ensure that the first field of
the structure is a valid layout. Additionally, if these checks see that
the layout of the child vtable contains all the required fields of a
vtable, in the correct order, then the child vtable will also be a
meta-table, inheriting a magical bit from the parent.
@deffn {Scheme Procedure} struct-vtable? obj
@deffnx {C Function} scm_struct_vtable_p (obj)
Return @code{#t} if @var{obj} is a vtable structure: an instance of a
meta-vtable.
@end deffn
@code{<standard-vtable>} is a root of the vtable tree. (Normally there
is only one root in a given Guile process, but due to some legacy
interfaces there may be more than one.)
The set of required fields of a vtable is the set of fields in the
@code{<standard-vtable>}, and is bound to @code{standard-vtable-fields}
in the default environment. It is possible to create a meta-vtable that
with additional fields in its layout, which can be used to create
vtables with additional data:
@example
scheme@@(guile-user)> (struct-ref $3 vtable-index-layout)
$6 = pruhsruhpwphuhuhprprpw
scheme@@(guile-user)> (struct-ref $4 vtable-index-layout)
$7 = pruhsruhpwphuhuh
scheme@@(guile-user)> standard-vtable-fields
$8 = "pruhsruhpwphuhuh"
scheme@@(guile-user)> (struct-ref $2 vtable-offset-user)
$9 = module
@end example
In this continuation of our earlier example, @code{$2} is a vtable that
has extra fields, because its vtable, @code{$3}, was made from a
meta-vtable with an extended layout. @code{vtable-offset-user} is a
convenient definition that indicates the number of fields in
@code{standard-vtable-fields}.
@defvr {Scheme Variable} standard-vtable-fields
A string containing the orderedq set of fields that a vtable must have.
@end defvr
@defvr {Scheme Variable} vtable-offset-user
The first index in a vtable that is available for a user.
@end defvr
@deffn {Scheme Procedure} make-struct-layout fields
@deffnx {C Function} scm_make_struct_layout (fields)
Return a structure layout symbol, from a @var{fields} string.
@var{fields} is as described under @code{make-vtable}
(@pxref{Vtables}). An invalid @var{fields} string is an error.
@end deffn
With these definitions, one can define @code{make-vtable} in this way:
@example
(define* (make-vtable fields #:optional printer)
(make-struct/no-tail <standard-vtable>
(make-struct-layout fields)
printer))
@end example
@node Vtable Example
@subsubsection Vtable Example
Let us bring these points together with an example. Consider a simple
object system with single inheritance. Objects will be normal
structures, and classes will be vtables with three extra class fields:
the name of the class, the parent class, and the list of fields.
So, first we need a meta-vtable that allocates instances with these
extra class fields.
@example
(define <class>
(make-vtable
(string-append standard-vtable-fields "pwpwpw")
(lambda (x port)
(format port "<<class> ~a>" (class-name x)))))
(define (class? x)
(and (struct? x)
(eq? (struct-vtable x) <class>)))
@end example
To make a structure with a specific meta-vtable, we will use
@code{make-struct/no-tail}, passing it the computed instance layout and
printer, as with @code{make-vtable}, and additionally the extra three
class fields.
@example
(define (make-class name parent fields)
(let* ((fields (compute-fields parent fields))
(layout (compute-layout fields)))
(make-struct/no-tail <class>
layout
(lambda (x port)
(print-instance x port))
name
parent
fields)))
@end example
Instances will store their associated data in slots in the structure: as
many slots as there are fields. The @code{compute-layout} procedure
below can compute a layout, and @code{field-index} returns the slot
corresponding to a field.
@example
(define-syntax-rule (define-accessor name n)
(define (name obj)
(struct-ref obj n)))
;; Accessors for classes
(define-accessor class-name (+ vtable-offset-user 0))
(define-accessor class-parent (+ vtable-offset-user 1))
(define-accessor class-fields (+ vtable-offset-user 2))
(define (compute-fields parent fields)
(if parent
(append (class-fields parent) fields)
fields))
(define (compute-layout fields)
(make-struct-layout
(string-concatenate (make-list (length fields) "pw"))))
(define (field-index class field)
(list-index (class-fields class) field))
(define (print-instance x port)
(format port "<~a" (class-name (struct-vtable x)))
(for-each (lambda (field idx)
(format port " ~a: ~a" field (struct-ref x idx)))
(class-fields (struct-vtable x))
(iota (length (class-fields (struct-vtable x)))))
(format port ">"))
@end example
So, at this point we can actually make a few classes:
@example
(define-syntax-rule (define-class name parent field ...)
(define name (make-class 'name parent '(field ...))))
(define-class <surface> #f
width height)
(define-class <window> <surface>
x y)
@end example
And finally, make an instance:
@example
(make-struct/no-tail <window> 400 300 10 20)
@result{} <<window> width: 400 height: 300 x: 10 y: 20>
@end example
And that's that. Note that there are many possible optimizations and
feature enhancements that can be made to this object system, and the
included GOOPS system does make most of them. For more simple use
cases, the records facility is usually sufficient. But sometimes you
need to make new kinds of data abstractions, and for that purpose,
structs are here.
@node Tail Arrays
@subsubsection Tail Arrays
Guile's structures have a facility whereby each instance of a vtable can
contain a variable-length tail array of values. The length of the tail
array is stored in the structure. This facility was originally intended
to allow C code to expose raw C structures with word-sized tail arrays
to Scheme.
However, the tail array facility is confusing and doesn't work very
well. It is very rarely used, but it insinuates itself into all
invocations of @code{make-struct}. For this reason the clumsily-named
@code{make-struct/no-tail} procedure can actually be more elegant in
actual use, because it doesn't have a random @code{0} argument stuck in
the middle.
Tail arrays also inhibit optimization by allowing instances to affect
their shapes. In the absence of tail arrays, all instances of a given
vtable have the same number and kinds of fields. This uniformity can be
exploited by the runtime and the optimizer. The presence of tail arrays
make some of these optimizations more difficult.
Finally, the tail array facility is ad-hoc and does not compose with the
rest of Guile. If a Guile user wants an array with user-specified
length, it's best to use a vector. It is more clear in the code, and
the standard optimization techniques will do a good job with it.
That said, we should mention some details about the interface. A vtable
that has tail array has upper-case permission descriptors: @code{W},
@code{R} or @code{O}, correspoding to tail arrays of writable,
read-only, or opaque elements. A tail array permission descriptor may
only appear in the last element of a vtable layout.
For exampple, @samp{pW} indicates a tail of writable Scheme-valued
fields. The @samp{pW} field itself holds the tail size, and the tail
fields come after it.
@example
(define v (make-vtable "prpW")) ;; one fixed then a tail array
(define s (make-struct v 6 "fixed field" 'x 'y))
(struct-ref s 0) @result{} "fixed field"
(struct-ref s 1) @result{} 2 ;; tail size
(struct-ref s 2) @result{} x ;; tail array ...
(struct-ref s 3) @result{} y
(struct-ref s 4) @result{} #f
@end example
@node Dictionary Types
@subsection Dictionary Types
A @dfn{dictionary} object is a data structure used to index
information in a user-defined way. In standard Scheme, the main
aggregate data types are lists and vectors. Lists are not really
indexed at all, and vectors are indexed only by number
(e.g.@: @code{(vector-ref foo 5)}). Often you will find it useful
to index your data on some other type; for example, in a library
catalog you might want to look up a book by the name of its
author. Dictionaries are used to help you organize information in
such a way.
An @dfn{association list} (or @dfn{alist} for short) is a list of
key-value pairs. Each pair represents a single quantity or
object; the @code{car} of the pair is a key which is used to
identify the object, and the @code{cdr} is the object's value.
A @dfn{hash table} also permits you to index objects with
arbitrary keys, but in a way that makes looking up any one object
extremely fast. A well-designed hash system makes hash table
lookups almost as fast as conventional array or vector references.
Alists are popular among Lisp programmers because they use only
the language's primitive operations (lists, @dfn{car}, @dfn{cdr}
and the equality primitives). No changes to the language core are
necessary. Therefore, with Scheme's built-in list manipulation
facilities, it is very convenient to handle data stored in an
association list. Also, alists are highly portable and can be
easily implemented on even the most minimal Lisp systems.
However, alists are inefficient, especially for storing large
quantities of data. Because we want Guile to be useful for large
software systems as well as small ones, Guile provides a rich set
of tools for using either association lists or hash tables.
@node Association Lists
@subsection Association Lists
@tpindex Association Lists
@tpindex Alist
@cindex association List
@cindex alist
@cindex database
An association list is a conventional data structure that is often used
to implement simple key-value databases. It consists of a list of
entries in which each entry is a pair. The @dfn{key} of each entry is
the @code{car} of the pair and the @dfn{value} of each entry is the
@code{cdr}.
@example
ASSOCIATION LIST ::= '( (KEY1 . VALUE1)
(KEY2 . VALUE2)
(KEY3 . VALUE3)
@dots{}
)
@end example
@noindent
Association lists are also known, for short, as @dfn{alists}.
The structure of an association list is just one example of the infinite
number of possible structures that can be built using pairs and lists.
As such, the keys and values in an association list can be manipulated
using the general list structure procedures @code{cons}, @code{car},
@code{cdr}, @code{set-car!}, @code{set-cdr!} and so on. However,
because association lists are so useful, Guile also provides specific
procedures for manipulating them.
@menu
* Alist Key Equality::
* Adding or Setting Alist Entries::
* Retrieving Alist Entries::
* Removing Alist Entries::
* Sloppy Alist Functions::
* Alist Example::
@end menu
@node Alist Key Equality
@subsubsection Alist Key Equality
All of Guile's dedicated association list procedures, apart from
@code{acons}, come in three flavours, depending on the level of equality
that is required to decide whether an existing key in the association
list is the same as the key that the procedure call uses to identify the
required entry.
@itemize @bullet
@item
Procedures with @dfn{assq} in their name use @code{eq?} to determine key
equality.
@item
Procedures with @dfn{assv} in their name use @code{eqv?} to determine
key equality.
@item
Procedures with @dfn{assoc} in their name use @code{equal?} to
determine key equality.
@end itemize
@code{acons} is an exception because it is used to build association
lists which do not require their entries' keys to be unique.
@node Adding or Setting Alist Entries
@subsubsection Adding or Setting Alist Entries
@code{acons} adds a new entry to an association list and returns the
combined association list. The combined alist is formed by consing the
new entry onto the head of the alist specified in the @code{acons}
procedure call. So the specified alist is not modified, but its
contents become shared with the tail of the combined alist that
@code{acons} returns.
In the most common usage of @code{acons}, a variable holding the
original association list is updated with the combined alist:
@example
(set! address-list (acons name address address-list))
@end example
In such cases, it doesn't matter that the old and new values of
@code{address-list} share some of their contents, since the old value is
usually no longer independently accessible.
Note that @code{acons} adds the specified new entry regardless of
whether the alist may already contain entries with keys that are, in
some sense, the same as that of the new entry. Thus @code{acons} is
ideal for building alists where there is no concept of key uniqueness.
@example
(set! task-list (acons 3 "pay gas bill" '()))
task-list
@result{}
((3 . "pay gas bill"))
(set! task-list (acons 3 "tidy bedroom" task-list))
task-list
@result{}
((3 . "tidy bedroom") (3 . "pay gas bill"))
@end example
@code{assq-set!}, @code{assv-set!} and @code{assoc-set!} are used to add
or replace an entry in an association list where there @emph{is} a
concept of key uniqueness. If the specified association list already
contains an entry whose key is the same as that specified in the
procedure call, the existing entry is replaced by the new one.
Otherwise, the new entry is consed onto the head of the old association
list to create the combined alist. In all cases, these procedures
return the combined alist.
@code{assq-set!} and friends @emph{may} destructively modify the
structure of the old association list in such a way that an existing
variable is correctly updated without having to @code{set!} it to the
value returned:
@example
address-list
@result{}
(("mary" . "34 Elm Road") ("james" . "16 Bow Street"))
(assoc-set! address-list "james" "1a London Road")
@result{}
(("mary" . "34 Elm Road") ("james" . "1a London Road"))
address-list
@result{}
(("mary" . "34 Elm Road") ("james" . "1a London Road"))
@end example
Or they may not:
@example
(assoc-set! address-list "bob" "11 Newington Avenue")
@result{}
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
("james" . "1a London Road"))
address-list
@result{}
(("mary" . "34 Elm Road") ("james" . "1a London Road"))
@end example
The only safe way to update an association list variable when adding or
replacing an entry like this is to @code{set!} the variable to the
returned value:
@example
(set! address-list
(assoc-set! address-list "bob" "11 Newington Avenue"))
address-list
@result{}
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
("james" . "1a London Road"))
@end example
Because of this slight inconvenience, you may find it more convenient to
use hash tables to store dictionary data. If your application will not
be modifying the contents of an alist very often, this may not make much
difference to you.
If you need to keep the old value of an association list in a form
independent from the list that results from modification by
@code{acons}, @code{assq-set!}, @code{assv-set!} or @code{assoc-set!},
use @code{list-copy} to copy the old association list before modifying
it.
@deffn {Scheme Procedure} acons key value alist
@deffnx {C Function} scm_acons (key, value, alist)
Add a new key-value pair to @var{alist}. A new pair is
created whose car is @var{key} and whose cdr is @var{value}, and the
pair is consed onto @var{alist}, and the new list is returned. This
function is @emph{not} destructive; @var{alist} is not modified.
@end deffn
@deffn {Scheme Procedure} assq-set! alist key val
@deffnx {Scheme Procedure} assv-set! alist key value
@deffnx {Scheme Procedure} assoc-set! alist key value
@deffnx {C Function} scm_assq_set_x (alist, key, val)
@deffnx {C Function} scm_assv_set_x (alist, key, val)
@deffnx {C Function} scm_assoc_set_x (alist, key, val)
Reassociate @var{key} in @var{alist} with @var{value}: find any existing
@var{alist} entry for @var{key} and associate it with the new
@var{value}. If @var{alist} does not contain an entry for @var{key},
add a new one. Return the (possibly new) alist.
These functions do not attempt to verify the structure of @var{alist},
and so may cause unusual results if passed an object that is not an
association list.
@end deffn
@node Retrieving Alist Entries
@subsubsection Retrieving Alist Entries
@rnindex assq
@rnindex assv
@rnindex assoc
@code{assq}, @code{assv} and @code{assoc} find the entry in an alist
for a given key, and return the @code{(@var{key} . @var{value})} pair.
@code{assq-ref}, @code{assv-ref} and @code{assoc-ref} do a similar
lookup, but return just the @var{value}.
@deffn {Scheme Procedure} assq key alist
@deffnx {Scheme Procedure} assv key alist
@deffnx {Scheme Procedure} assoc key alist
@deffnx {C Function} scm_assq (key, alist)
@deffnx {C Function} scm_assv (key, alist)
@deffnx {C Function} scm_assoc (key, alist)
Return the first entry in @var{alist} with the given @var{key}. The
return is the pair @code{(KEY . VALUE)} from @var{alist}. If there's
no matching entry the return is @code{#f}.
@code{assq} compares keys with @code{eq?}, @code{assv} uses
@code{eqv?} and @code{assoc} uses @code{equal?}. See also SRFI-1
which has an extended @code{assoc} (@ref{SRFI-1 Association Lists}).
@end deffn
@deffn {Scheme Procedure} assq-ref alist key
@deffnx {Scheme Procedure} assv-ref alist key
@deffnx {Scheme Procedure} assoc-ref alist key
@deffnx {C Function} scm_assq_ref (alist, key)
@deffnx {C Function} scm_assv_ref (alist, key)
@deffnx {C Function} scm_assoc_ref (alist, key)
Return the value from the first entry in @var{alist} with the given
@var{key}, or @code{#f} if there's no such entry.
@code{assq-ref} compares keys with @code{eq?}, @code{assv-ref} uses
@code{eqv?} and @code{assoc-ref} uses @code{equal?}.
Notice these functions have the @var{key} argument last, like other
@code{-ref} functions, but this is opposite to what @code{assq}
etc above use.
When the return is @code{#f} it can be either @var{key} not found, or
an entry which happens to have value @code{#f} in the @code{cdr}. Use
@code{assq} etc above if you need to differentiate these cases.
@end deffn
@node Removing Alist Entries
@subsubsection Removing Alist Entries
To remove the element from an association list whose key matches a
specified key, use @code{assq-remove!}, @code{assv-remove!} or
@code{assoc-remove!} (depending, as usual, on the level of equality
required between the key that you specify and the keys in the
association list).
As with @code{assq-set!} and friends, the specified alist may or may not
be modified destructively, and the only safe way to update a variable
containing the alist is to @code{set!} it to the value that
@code{assq-remove!} and friends return.
@example
address-list
@result{}
(("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
("james" . "1a London Road"))
(set! address-list (assoc-remove! address-list "mary"))
address-list
@result{}
(("bob" . "11 Newington Avenue") ("james" . "1a London Road"))
@end example
Note that, when @code{assq/v/oc-remove!} is used to modify an
association list that has been constructed only using the corresponding
@code{assq/v/oc-set!}, there can be at most one matching entry in the
alist, so the question of multiple entries being removed in one go does
not arise. If @code{assq/v/oc-remove!} is applied to an association
list that has been constructed using @code{acons}, or an
@code{assq/v/oc-set!} with a different level of equality, or any mixture
of these, it removes only the first matching entry from the alist, even
if the alist might contain further matching entries. For example:
@example
(define address-list '())
(set! address-list (assq-set! address-list "mary" "11 Elm Street"))
(set! address-list (assq-set! address-list "mary" "57 Pine Drive"))
address-list
@result{}
(("mary" . "57 Pine Drive") ("mary" . "11 Elm Street"))
(set! address-list (assoc-remove! address-list "mary"))
address-list
@result{}
(("mary" . "11 Elm Street"))
@end example
In this example, the two instances of the string "mary" are not the same
when compared using @code{eq?}, so the two @code{assq-set!} calls add
two distinct entries to @code{address-list}. When compared using
@code{equal?}, both "mary"s in @code{address-list} are the same as the
"mary" in the @code{assoc-remove!} call, but @code{assoc-remove!} stops
after removing the first matching entry that it finds, and so one of the
"mary" entries is left in place.
@deffn {Scheme Procedure} assq-remove! alist key
@deffnx {Scheme Procedure} assv-remove! alist key
@deffnx {Scheme Procedure} assoc-remove! alist key
@deffnx {C Function} scm_assq_remove_x (alist, key)
@deffnx {C Function} scm_assv_remove_x (alist, key)
@deffnx {C Function} scm_assoc_remove_x (alist, key)
Delete the first entry in @var{alist} associated with @var{key}, and return
the resulting alist.
@end deffn
@node Sloppy Alist Functions
@subsubsection Sloppy Alist Functions
@code{sloppy-assq}, @code{sloppy-assv} and @code{sloppy-assoc} behave
like the corresponding non-@code{sloppy-} procedures, except that they
return @code{#f} when the specified association list is not well-formed,
where the non-@code{sloppy-} versions would signal an error.
Specifically, there are two conditions for which the non-@code{sloppy-}
procedures signal an error, which the @code{sloppy-} procedures handle
instead by returning @code{#f}. Firstly, if the specified alist as a
whole is not a proper list:
@example
(assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
@result{}
ERROR: In procedure assoc in expression (assoc "mary" (quote #)):
ERROR: Wrong type argument in position 2 (expecting
association list): ((1 . 2) ("key" . "door") . "open sesame")
(sloppy-assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
@result{}
#f
@end example
@noindent
Secondly, if one of the entries in the specified alist is not a pair:
@example
(assoc 2 '((1 . 1) 2 (3 . 9)))
@result{}
ERROR: In procedure assoc in expression (assoc 2 (quote #)):
ERROR: Wrong type argument in position 2 (expecting
association list): ((1 . 1) 2 (3 . 9))
(sloppy-assoc 2 '((1 . 1) 2 (3 . 9)))
@result{}
#f
@end example
Unless you are explicitly working with badly formed association lists,
it is much safer to use the non-@code{sloppy-} procedures, because they
help to highlight coding and data errors that the @code{sloppy-}
versions would silently cover up.
@deffn {Scheme Procedure} sloppy-assq key alist
@deffnx {C Function} scm_sloppy_assq (key, alist)
Behaves like @code{assq} but does not do any error checking.
Recommended only for use in Guile internals.
@end deffn
@deffn {Scheme Procedure} sloppy-assv key alist
@deffnx {C Function} scm_sloppy_assv (key, alist)
Behaves like @code{assv} but does not do any error checking.
Recommended only for use in Guile internals.
@end deffn
@deffn {Scheme Procedure} sloppy-assoc key alist
@deffnx {C Function} scm_sloppy_assoc (key, alist)
Behaves like @code{assoc} but does not do any error checking.
Recommended only for use in Guile internals.
@end deffn
@node Alist Example
@subsubsection Alist Example
Here is a longer example of how alists may be used in practice.
@lisp
(define capitals '(("New York" . "Albany")
("Oregon" . "Salem")
("Florida" . "Miami")))
;; What's the capital of Oregon?
(assoc "Oregon" capitals) @result{} ("Oregon" . "Salem")
(assoc-ref capitals "Oregon") @result{} "Salem"
;; We left out South Dakota.
(set! capitals
(assoc-set! capitals "South Dakota" "Pierre"))
capitals
@result{} (("South Dakota" . "Pierre")
("New York" . "Albany")
("Oregon" . "Salem")
("Florida" . "Miami"))
;; And we got Florida wrong.
(set! capitals
(assoc-set! capitals "Florida" "Tallahassee"))
capitals
@result{} (("South Dakota" . "Pierre")
("New York" . "Albany")
("Oregon" . "Salem")
("Florida" . "Tallahassee"))
;; After Oregon secedes, we can remove it.
(set! capitals
(assoc-remove! capitals "Oregon"))
capitals
@result{} (("South Dakota" . "Pierre")
("New York" . "Albany")
("Florida" . "Tallahassee"))
@end lisp
@node VHashes
@subsection VList-Based Hash Lists or ``VHashes''
@cindex VList-based hash lists
@cindex VHash
The @code{(ice-9 vlist)} module provides an implementation of @dfn{VList-based
hash lists} (@pxref{VLists}). VList-based hash lists, or @dfn{vhashes}, are an
immutable dictionary type similar to association lists that maps @dfn{keys} to
@dfn{values}. However, unlike association lists, accessing a value given its
key is typically a constant-time operation.
The VHash programming interface of @code{(ice-9 vlist)} is mostly the same as
that of association lists found in SRFI-1, with procedure names prefixed by
@code{vhash-} instead of @code{alist-} (@pxref{SRFI-1 Association Lists}).
In addition, vhashes can be manipulated using VList operations:
@example
(vlist-head (vhash-consq 'a 1 vlist-null))
@result{} (a . 1)
(define vh1 (vhash-consq 'b 2 (vhash-consq 'a 1 vlist-null)))
(define vh2 (vhash-consq 'c 3 (vlist-tail vh1)))
(vhash-assq 'a vh2)
@result{} (a . 1)
(vhash-assq 'b vh2)
@result{} #f
(vhash-assq 'c vh2)
@result{} (c . 3)
(vlist->list vh2)
@result{} ((c . 3) (a . 1))
@end example
However, keep in mind that procedures that construct new VLists
(@code{vlist-map}, @code{vlist-filter}, etc.) return raw VLists, not vhashes:
@example
(define vh (alist->vhash '((a . 1) (b . 2) (c . 3)) hashq))
(vhash-assq 'a vh)
@result{} (a . 1)
(define vl
;; This will create a raw vlist.
(vlist-filter (lambda (key+value) (odd? (cdr key+value))) vh))
(vhash-assq 'a vl)
@result{} ERROR: Wrong type argument in position 2
(vlist->list vl)
@result{} ((a . 1) (c . 3))
@end example
@deffn {Scheme Procedure} vhash? obj
Return true if @var{obj} is a vhash.
@end deffn
@deffn {Scheme Procedure} vhash-cons key value vhash [hash-proc]
@deffnx {Scheme Procedure} vhash-consq key value vhash
@deffnx {Scheme Procedure} vhash-consv key value vhash
Return a new hash list based on @var{vhash} where @var{key} is associated with
@var{value}, using @var{hash-proc} to compute the hash of @var{key}.
@var{vhash} must be either @code{vlist-null} or a vhash returned by a previous
call to @code{vhash-cons}. @var{hash-proc} defaults to @code{hash} (@pxref{Hash
Table Reference, @code{hash} procedure}). With @code{vhash-consq}, the
@code{hashq} hash function is used; with @code{vhash-consv} the @code{hashv}
hash function is used.
All @code{vhash-cons} calls made to construct a vhash should use the same
@var{hash-proc}. Failing to do that, the result is undefined.
@end deffn
@deffn {Scheme Procedure} vhash-assoc key vhash [equal? [hash-proc]]
@deffnx {Scheme Procedure} vhash-assq key vhash
@deffnx {Scheme Procedure} vhash-assv key vhash
Return the first key/value pair from @var{vhash} whose key is equal to @var{key}
according to the @var{equal?} equality predicate (which defaults to
@code{equal?}), and using @var{hash-proc} (which defaults to @code{hash}) to
compute the hash of @var{key}. The second form uses @code{eq?} as the equality
predicate and @code{hashq} as the hash function; the last form uses @code{eqv?}
and @code{hashv}.
Note that it is important to consistently use the same hash function for
@var{hash-proc} as was passed to @code{vhash-cons}. Failing to do that, the
result is unpredictable.
@end deffn
@deffn {Scheme Procedure} vhash-delete key vhash [equal? [hash-proc]]
@deffnx {Scheme Procedure} vhash-delq key vhash
@deffnx {Scheme Procedure} vhash-delv key vhash
Remove all associations from @var{vhash} with @var{key}, comparing keys with
@var{equal?} (which defaults to @code{equal?}), and computing the hash of
@var{key} using @var{hash-proc} (which defaults to @code{hash}). The second
form uses @code{eq?} as the equality predicate and @code{hashq} as the hash
function; the last one uses @code{eqv?} and @code{hashv}.
Again the choice of @var{hash-proc} must be consistent with previous calls to
@code{vhash-cons}.
@end deffn
@deffn {Scheme Procedure} vhash-fold proc init vhash
@deffnx {Scheme Procedure} vhash-fold-right proc init vhash
Fold over the key/value elements of @var{vhash} in the given direction,
with each call to @var{proc} having the form @code{(@var{proc} key value
result)}, where @var{result} is the result of the previous call to
@var{proc} and @var{init} the value of @var{result} for the first call
to @var{proc}.
@end deffn
@deffn {Scheme Procedure} vhash-fold* proc init key vhash [equal? [hash]]
@deffnx {Scheme Procedure} vhash-foldq* proc init key vhash
@deffnx {Scheme Procedure} vhash-foldv* proc init key vhash
Fold over all the values associated with @var{key} in @var{vhash}, with each
call to @var{proc} having the form @code{(proc value result)}, where
@var{result} is the result of the previous call to @var{proc} and @var{init} the
value of @var{result} for the first call to @var{proc}.
Keys in @var{vhash} are hashed using @var{hash} are compared using @var{equal?}.
The second form uses @code{eq?} as the equality predicate and @code{hashq} as
the hash function; the third one uses @code{eqv?} and @code{hashv}.
Example:
@example
(define vh
(alist->vhash '((a . 1) (a . 2) (z . 0) (a . 3))))
(vhash-fold* cons '() 'a vh)
@result{} (3 2 1)
(vhash-fold* cons '() 'z vh)
@result{} (0)
@end example
@end deffn
@deffn {Scheme Procedure} alist->vhash alist [hash-proc]
Return the vhash corresponding to @var{alist}, an association list, using
@var{hash-proc} to compute key hashes. When omitted, @var{hash-proc} defaults
to @code{hash}.
@end deffn
@node Hash Tables
@subsection Hash Tables
@tpindex Hash Tables
Hash tables are dictionaries which offer similar functionality as
association lists: They provide a mapping from keys to values. The
difference is that association lists need time linear in the size of
elements when searching for entries, whereas hash tables can normally
search in constant time. The drawback is that hash tables require a
little bit more memory, and that you can not use the normal list
procedures (@pxref{Lists}) for working with them.
@menu
* Hash Table Examples:: Demonstration of hash table usage.
* Hash Table Reference:: Hash table procedure descriptions.
@end menu
@node Hash Table Examples
@subsubsection Hash Table Examples
For demonstration purposes, this section gives a few usage examples of
some hash table procedures, together with some explanation what they do.
First we start by creating a new hash table with 31 slots, and
populate it with two key/value pairs.
@lisp
(define h (make-hash-table 31))
;; This is an opaque object
h
@result{}
#<hash-table 0/31>
;; Inserting into a hash table can be done with hashq-set!
(hashq-set! h 'foo "bar")
@result{}
"bar"
(hashq-set! h 'braz "zonk")
@result{}
"zonk"
;; Or with hash-create-handle!
(hashq-create-handle! h 'frob #f)
@result{}
(frob . #f)
@end lisp
You can get the value for a given key with the procedure
@code{hashq-ref}, but the problem with this procedure is that you
cannot reliably determine whether a key does exists in the table. The
reason is that the procedure returns @code{#f} if the key is not in
the table, but it will return the same value if the key is in the
table and just happens to have the value @code{#f}, as you can see in
the following examples.
@lisp
(hashq-ref h 'foo)
@result{}
"bar"
(hashq-ref h 'frob)
@result{}
#f
(hashq-ref h 'not-there)
@result{}
#f
@end lisp
Better is to use the procedure @code{hashq-get-handle}, which makes a
distinction between the two cases. Just like @code{assq}, this
procedure returns a key/value-pair on success, and @code{#f} if the
key is not found.
@lisp
(hashq-get-handle h 'foo)
@result{}
(foo . "bar")
(hashq-get-handle h 'not-there)
@result{}
#f
@end lisp
Interesting results can be computed by using @code{hash-fold} to work
through each element. This example will count the total number of
elements:
@lisp
(hash-fold (lambda (key value seed) (+ 1 seed)) 0 h)
@result{}
3
@end lisp
The same thing can be done with the procedure @code{hash-count}, which
can also count the number of elements matching a particular predicate.
For example, count the number of elements with string values:
@lisp
(hash-count (lambda (key value) (string? value)) h)
@result{}
2
@end lisp
Counting all the elements is a simple task using @code{const}:
@lisp
(hash-count (const #t) h)
@result{}
3
@end lisp
@node Hash Table Reference
@subsubsection Hash Table Reference
@c FIXME: Describe in broad terms what happens for resizing, and what
@c the initial size means for this.
Like the association list functions, the hash table functions come in
several varieties, according to the equality test used for the keys.
Plain @code{hash-} functions use @code{equal?}, @code{hashq-}
functions use @code{eq?}, @code{hashv-} functions use @code{eqv?}, and
the @code{hashx-} functions use an application supplied test.
A single @code{make-hash-table} creates a hash table suitable for use
with any set of functions, but it's imperative that just one set is
then used consistently, or results will be unpredictable.
Hash tables are implemented as a vector indexed by a hash value formed
from the key, with an association list of key/value pairs for each
bucket in case distinct keys hash together. Direct access to the
pairs in those lists is provided by the @code{-handle-} functions.
When the number of entries in a hash table goes above a threshold, the
vector is made larger and the entries are rehashed, to prevent the
bucket lists from becoming too long and slowing down accesses. When the
number of entries goes below a threshold, the vector is shrunk to save
space.
For the @code{hashx-} ``extended'' routines, an application supplies a
@var{hash} function producing an integer index like @code{hashq} etc
below, and an @var{assoc} alist search function like @code{assq} etc
(@pxref{Retrieving Alist Entries}). Here's an example of such
functions implementing case-insensitive hashing of string keys,
@example
(use-modules (srfi srfi-1)
(srfi srfi-13))
(define (my-hash str size)
(remainder (string-hash-ci str) size))
(define (my-assoc str alist)
(find (lambda (pair) (string-ci=? str (car pair))) alist))
(define my-table (make-hash-table))
(hashx-set! my-hash my-assoc my-table "foo" 123)
(hashx-ref my-hash my-assoc my-table "FOO")
@result{} 123
@end example
In a @code{hashx-} @var{hash} function the aim is to spread keys
across the vector, so bucket lists don't become long. But the actual
values are arbitrary as long as they're in the range 0 to
@math{@var{size}-1}. Helpful functions for forming a hash value, in
addition to @code{hashq} etc below, include @code{symbol-hash}
(@pxref{Symbol Keys}), @code{string-hash} and @code{string-hash-ci}
(@pxref{String Comparison}), and @code{char-set-hash}
(@pxref{Character Set Predicates/Comparison}).
@sp 1
@deffn {Scheme Procedure} make-hash-table [size]
Create a new hash table object, with an optional minimum
vector @var{size}.
When @var{size} is given, the table vector will still grow and shrink
automatically, as described above, but with @var{size} as a minimum.
If an application knows roughly how many entries the table will hold
then it can use @var{size} to avoid rehashing when initial entries are
added.
@end deffn
@deffn {Scheme Procedure} alist->hash-table alist
@deffnx {Scheme Procedure} alist->hashq-table alist
@deffnx {Scheme Procedure} alist->hashv-table alist
@deffnx {Scheme Procedure} alist->hashx-table hash assoc alist
Convert @var{alist} into a hash table. When keys are repeated in
@var{alist}, the leftmost association takes precedence.
@example
(use-modules (ice-9 hash-table))
(alist->hash-table '((foo . 1) (bar . 2)))
@end example
When converting to an extended hash table, custom @var{hash} and
@var{assoc} procedures must be provided.
@example
(alist->hashx-table hash assoc '((foo . 1) (bar . 2)))
@end example
@end deffn
@deffn {Scheme Procedure} hash-table? obj
@deffnx {C Function} scm_hash_table_p (obj)
Return @code{#t} if @var{obj} is a abstract hash table object.
@end deffn
@deffn {Scheme Procedure} hash-clear! table
@deffnx {C Function} scm_hash_clear_x (table)
Remove all items from @var{table} (without triggering a resize).
@end deffn
@deffn {Scheme Procedure} hash-ref table key [dflt]
@deffnx {Scheme Procedure} hashq-ref table key [dflt]
@deffnx {Scheme Procedure} hashv-ref table key [dflt]
@deffnx {Scheme Procedure} hashx-ref hash assoc table key [dflt]
@deffnx {C Function} scm_hash_ref (table, key, dflt)
@deffnx {C Function} scm_hashq_ref (table, key, dflt)
@deffnx {C Function} scm_hashv_ref (table, key, dflt)
@deffnx {C Function} scm_hashx_ref (hash, assoc, table, key, dflt)
Lookup @var{key} in the given hash @var{table}, and return the
associated value. If @var{key} is not found, return @var{dflt}, or
@code{#f} if @var{dflt} is not given.
@end deffn
@deffn {Scheme Procedure} hash-set! table key val
@deffnx {Scheme Procedure} hashq-set! table key val
@deffnx {Scheme Procedure} hashv-set! table key val
@deffnx {Scheme Procedure} hashx-set! hash assoc table key val
@deffnx {C Function} scm_hash_set_x (table, key, val)
@deffnx {C Function} scm_hashq_set_x (table, key, val)
@deffnx {C Function} scm_hashv_set_x (table, key, val)
@deffnx {C Function} scm_hashx_set_x (hash, assoc, table, key, val)
Associate @var{val} with @var{key} in the given hash @var{table}. If
@var{key} is already present then it's associated value is changed.
If it's not present then a new entry is created.
@end deffn
@deffn {Scheme Procedure} hash-remove! table key
@deffnx {Scheme Procedure} hashq-remove! table key
@deffnx {Scheme Procedure} hashv-remove! table key
@deffnx {Scheme Procedure} hashx-remove! hash assoc table key
@deffnx {C Function} scm_hash_remove_x (table, key)
@deffnx {C Function} scm_hashq_remove_x (table, key)
@deffnx {C Function} scm_hashv_remove_x (table, key)
@deffnx {C Function} scm_hashx_remove_x (hash, assoc, table, key)
Remove any association for @var{key} in the given hash @var{table}.
If @var{key} is not in @var{table} then nothing is done.
@end deffn
@deffn {Scheme Procedure} hash key size
@deffnx {Scheme Procedure} hashq key size
@deffnx {Scheme Procedure} hashv key size
@deffnx {C Function} scm_hash (key, size)
@deffnx {C Function} scm_hashq (key, size)
@deffnx {C Function} scm_hashv (key, size)
Return a hash value for @var{key}. This is a number in the range
@math{0} to @math{@var{size}-1}, which is suitable for use in a hash
table of the given @var{size}.
Note that @code{hashq} and @code{hashv} may use internal addresses of
objects, so if an object is garbage collected and re-created it can
have a different hash value, even when the two are notionally
@code{eq?}. For instance with symbols,
@example
(hashq 'something 123) @result{} 19
(gc)
(hashq 'something 123) @result{} 62
@end example
In normal use this is not a problem, since an object entered into a
hash table won't be garbage collected until removed. It's only if
hashing calculations are somehow separated from normal references that
its lifetime needs to be considered.
@end deffn
@deffn {Scheme Procedure} hash-get-handle table key
@deffnx {Scheme Procedure} hashq-get-handle table key
@deffnx {Scheme Procedure} hashv-get-handle table key
@deffnx {Scheme Procedure} hashx-get-handle hash assoc table key
@deffnx {C Function} scm_hash_get_handle (table, key)
@deffnx {C Function} scm_hashq_get_handle (table, key)
@deffnx {C Function} scm_hashv_get_handle (table, key)
@deffnx {C Function} scm_hashx_get_handle (hash, assoc, table, key)
Return the @code{(@var{key} . @var{value})} pair for @var{key} in the
given hash @var{table}, or @code{#f} if @var{key} is not in
@var{table}.
@end deffn
@deffn {Scheme Procedure} hash-create-handle! table key init
@deffnx {Scheme Procedure} hashq-create-handle! table key init
@deffnx {Scheme Procedure} hashv-create-handle! table key init
@deffnx {Scheme Procedure} hashx-create-handle! hash assoc table key init
@deffnx {C Function} scm_hash_create_handle_x (table, key, init)
@deffnx {C Function} scm_hashq_create_handle_x (table, key, init)
@deffnx {C Function} scm_hashv_create_handle_x (table, key, init)
@deffnx {C Function} scm_hashx_create_handle_x (hash, assoc, table, key, init)
Return the @code{(@var{key} . @var{value})} pair for @var{key} in the
given hash @var{table}. If @var{key} is not in @var{table} then
create an entry for it with @var{init} as the value, and return that
pair.
@end deffn
@deffn {Scheme Procedure} hash-map->list proc table
@deffnx {Scheme Procedure} hash-for-each proc table
@deffnx {C Function} scm_hash_map_to_list (proc, table)
@deffnx {C Function} scm_hash_for_each (proc, table)
Apply @var{proc} to the entries in the given hash @var{table}. Each
call is @code{(@var{proc} @var{key} @var{value})}. @code{hash-map->list}
returns a list of the results from these calls, @code{hash-for-each}
discards the results and returns an unspecified value.
Calls are made over the table entries in an unspecified order, and for
@code{hash-map->list} the order of the values in the returned list is
unspecified. Results will be unpredictable if @var{table} is modified
while iterating.
For example the following returns a new alist comprising all the
entries from @code{mytable}, in no particular order.
@example
(hash-map->list cons mytable)
@end example
@end deffn
@deffn {Scheme Procedure} hash-for-each-handle proc table
@deffnx {C Function} scm_hash_for_each_handle (proc, table)
Apply @var{proc} to the entries in the given hash @var{table}. Each
call is @code{(@var{proc} @var{handle})}, where @var{handle} is a
@code{(@var{key} . @var{value})} pair. Return an unspecified value.
@code{hash-for-each-handle} differs from @code{hash-for-each} only in
the argument list of @var{proc}.
@end deffn
@deffn {Scheme Procedure} hash-fold proc init table
@deffnx {C Function} scm_hash_fold (proc, init, table)
Accumulate a result by applying @var{proc} to the elements of the
given hash @var{table}. Each call is @code{(@var{proc} @var{key}
@var{value} @var{prior-result})}, where @var{key} and @var{value} are
from the @var{table} and @var{prior-result} is the return from the
previous @var{proc} call. For the first call, @var{prior-result} is
the given @var{init} value.
Calls are made over the table entries in an unspecified order.
Results will be unpredictable if @var{table} is modified while
@code{hash-fold} is running.
For example, the following returns a count of how many keys in
@code{mytable} are strings.
@example
(hash-fold (lambda (key value prior)
(if (string? key) (1+ prior) prior))
0 mytable)
@end example
@end deffn
@deffn {Scheme Procedure} hash-count pred table
@deffnx {C Function} scm_hash_count (pred, table)
Return the number of elements in the given hash @var{table} that cause
@code{(@var{pred} @var{key} @var{value})} to return true. To quickly
determine the total number of elements, use @code{(const #t)} for
@var{pred}.
@end deffn
@c Local Variables:
@c TeX-master: "guile.texi"
@c End:
|