/* Copyright (C) 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004, * 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, * 2014 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 3 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA */ #ifdef HAVE_CONFIG_H # include #endif #include "libguile/bdw-gc.h" #include #include "libguile/_scm.h" #include "libguile/deprecation.h" #include #include #include #ifdef HAVE_STRING_H #include /* for memset used by FD_ZERO on Solaris 10 */ #endif #if HAVE_SYS_TIME_H #include #endif #if HAVE_PTHREAD_NP_H # include #endif #include #include #include #include #include "libguile/validate.h" #include "libguile/eval.h" #include "libguile/async.h" #include "libguile/ports.h" #include "libguile/threads.h" #include "libguile/dynwind.h" #include "libguile/iselect.h" #include "libguile/fluids.h" #include "libguile/continuations.h" #include "libguile/gc.h" #include "libguile/gc-inline.h" #include "libguile/init.h" #include "libguile/scmsigs.h" #include "libguile/strings.h" #include "libguile/vm.h" #include /* The GC "kind" for threads that allow them to mark their VM stacks. */ static int thread_gc_kind; static struct GC_ms_entry * thread_mark (GC_word *addr, struct GC_ms_entry *mark_stack_ptr, struct GC_ms_entry *mark_stack_limit, GC_word env) { int word; const struct scm_i_thread *t = (struct scm_i_thread *) addr; if (SCM_UNPACK (t->handle) == 0) /* T must be on the free-list; ignore. (See warning in gc_mark.h.) */ return mark_stack_ptr; /* Mark T. We could be more precise, but it doesn't matter. */ for (word = 0; word * sizeof (*addr) < sizeof (*t); word++) mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr[word], mark_stack_ptr, mark_stack_limit, NULL); /* The pointerless freelists are threaded through their first word, but GC doesn't know to trace them (as they are pointerless), so we need to do that here. See the comments at the top of libgc's gc_inline.h. */ if (t->pointerless_freelists) { size_t n; for (n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++) { void *chain = t->pointerless_freelists[n]; if (chain) { /* The first link is already marked by the freelist vector, so we just have to mark the tail. */ while ((chain = *(void **)chain)) mark_stack_ptr = GC_mark_and_push (chain, mark_stack_ptr, mark_stack_limit, NULL); } } } if (t->vp) mark_stack_ptr = scm_i_vm_mark_stack (t->vp, mark_stack_ptr, mark_stack_limit); return mark_stack_ptr; } static void to_timespec (SCM t, scm_t_timespec *waittime) { if (scm_is_pair (t)) { waittime->tv_sec = scm_to_ulong (SCM_CAR (t)); waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000; } else { double time = scm_to_double (t); double sec = scm_c_truncate (time); waittime->tv_sec = (long) sec; waittime->tv_nsec = (long) ((time - sec) * 1000000000); } } /*** Queues */ /* Note: We annotate with "GC-robust" assignments whose purpose is to avoid the risk of false references leading to unbounded retained space as described in "Bounding Space Usage of Conservative Garbage Collectors", H.J. Boehm, 2001. */ /* Make an empty queue data structure. */ static SCM make_queue () { return scm_cons (SCM_EOL, SCM_EOL); } static scm_i_pthread_mutex_t queue_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER; /* Put T at the back of Q and return a handle that can be used with remqueue to remove T from Q again. */ static SCM enqueue (SCM q, SCM t) { SCM c = scm_cons (t, SCM_EOL); scm_i_pthread_mutex_lock (&queue_lock); if (scm_is_null (SCM_CDR (q))) SCM_SETCDR (q, c); else SCM_SETCDR (SCM_CAR (q), c); SCM_SETCAR (q, c); scm_i_pthread_mutex_unlock (&queue_lock); return c; } /* Remove the element that the handle C refers to from the queue Q. C must have been returned from a call to enqueue. The return value is zero when the element referred to by C has already been removed. Otherwise, 1 is returned. */ static int remqueue (SCM q, SCM c) { SCM p, prev = q; scm_i_pthread_mutex_lock (&queue_lock); for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p)) { if (scm_is_eq (p, c)) { if (scm_is_eq (c, SCM_CAR (q))) SCM_SETCAR (q, scm_is_eq (prev, q) ? SCM_EOL : prev); SCM_SETCDR (prev, SCM_CDR (c)); /* GC-robust */ SCM_SETCDR (c, SCM_EOL); scm_i_pthread_mutex_unlock (&queue_lock); return 1; } prev = p; } scm_i_pthread_mutex_unlock (&queue_lock); return 0; } /* Remove the front-most element from the queue Q and return it. Return SCM_BOOL_F when Q is empty. */ static SCM dequeue (SCM q) { SCM c; scm_i_pthread_mutex_lock (&queue_lock); c = SCM_CDR (q); if (scm_is_null (c)) { scm_i_pthread_mutex_unlock (&queue_lock); return SCM_BOOL_F; } else { SCM_SETCDR (q, SCM_CDR (c)); if (scm_is_null (SCM_CDR (q))) SCM_SETCAR (q, SCM_EOL); scm_i_pthread_mutex_unlock (&queue_lock); /* GC-robust */ SCM_SETCDR (c, SCM_EOL); return SCM_CAR (c); } } /*** Thread smob routines */ static int thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED) { /* On a Gnu system pthread_t is an unsigned long, but on mingw it's a struct. A cast like "(unsigned long) t->pthread" is a syntax error in the struct case, hence we go via a union, and extract according to the size of pthread_t. */ union { scm_i_pthread_t p; unsigned short us; unsigned int ui; unsigned long ul; scm_t_uintmax um; } u; scm_i_thread *t = SCM_I_THREAD_DATA (exp); scm_i_pthread_t p = t->pthread; scm_t_uintmax id; u.p = p; if (sizeof (p) == sizeof (unsigned short)) id = u.us; else if (sizeof (p) == sizeof (unsigned int)) id = u.ui; else if (sizeof (p) == sizeof (unsigned long)) id = u.ul; else id = u.um; scm_puts ("#", port); return 1; } /*** Blocking on queues. */ /* See also scm_system_async_mark_for_thread for how such a block is interrputed. */ /* Put the current thread on QUEUE and go to sleep, waiting for it to be woken up by a call to 'unblock_from_queue', or to be interrupted. Upon return of this function, the current thread is no longer on QUEUE, even when the sleep has been interrupted. The caller of block_self must hold MUTEX. It will be atomically unlocked while sleeping, just as with scm_i_pthread_cond_wait. When WAITTIME is not NULL, the sleep will be aborted at that time. The return value of block_self is an errno value. It will be zero when the sleep has been successfully completed by a call to unblock_from_queue, EINTR when it has been interrupted by the delivery of a system async, and ETIMEDOUT when the timeout has expired. The system asyncs themselves are not executed by block_self. */ static int block_self (SCM queue, scm_i_pthread_mutex_t *mutex, const scm_t_timespec *waittime) { scm_i_thread *t = SCM_I_CURRENT_THREAD; SCM q_handle; int err; if (scm_i_prepare_to_wait_on_cond (t, mutex, &t->sleep_cond)) return EINTR; t->block_asyncs++; q_handle = enqueue (queue, t->handle); if (waittime == NULL) err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex); else err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime); /* When we are still on QUEUE, we have been interrupted. We report this only when no other error (such as a timeout) has happened above. */ if (remqueue (queue, q_handle) && err == 0) err = EINTR; t->block_asyncs--; scm_i_wait_finished (t); return err; } /* Wake up the first thread on QUEUE, if any. The awoken thread is returned, or #f if the queue was empty. */ static SCM unblock_from_queue (SCM queue) { SCM thread = dequeue (queue); if (scm_is_true (thread)) scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond); return thread; } /* Getting into and out of guile mode. */ /* Key used to attach a cleanup handler to a given thread. Also, if thread-local storage is unavailable, this key is used to retrieve the current thread with `pthread_getspecific ()'. */ scm_i_pthread_key_t scm_i_thread_key; #ifdef SCM_HAVE_THREAD_STORAGE_CLASS /* When thread-local storage (TLS) is available, a pointer to the current-thread object is kept in TLS. Note that storing the thread-object itself in TLS (rather than a pointer to some malloc'd memory) is not possible since thread objects may live longer than the actual thread they represent. */ SCM_THREAD_LOCAL scm_i_thread *scm_i_current_thread = NULL; #endif /* SCM_HAVE_THREAD_STORAGE_CLASS */ static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER; static scm_i_thread *all_threads = NULL; static int thread_count; static SCM default_dynamic_state; /* Perform first stage of thread initialisation, in non-guile mode. */ static void guilify_self_1 (struct GC_stack_base *base, int needs_unregister) { scm_i_thread t; /* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value before allocating anything in this thread, because allocation could cause GC to run, and GC could cause finalizers, which could invoke Scheme functions, which need the current thread to be set. */ t.pthread = scm_i_pthread_self (); t.handle = SCM_BOOL_F; t.result = SCM_BOOL_F; t.freelists = NULL; t.pointerless_freelists = NULL; t.dynamic_state = NULL; t.dynstack.base = NULL; t.dynstack.top = NULL; t.dynstack.limit = NULL; t.pending_asyncs = SCM_EOL; t.block_asyncs = 1; t.base = base->mem_base; #ifdef __ia64__ t.register_backing_store_base = base->reg_base; #endif t.continuation_root = SCM_EOL; t.continuation_base = t.base; scm_i_pthread_cond_init (&t.sleep_cond, NULL); t.wake = NULL; t.vp = NULL; if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0) /* FIXME: Error conditions during the initialization phase are handled gracelessly since public functions such as `scm_init_guile ()' currently have type `void'. */ abort (); t.exited = 0; t.guile_mode = 0; t.needs_unregister = needs_unregister; /* The switcheroo. */ { scm_i_thread *t_ptr = &t; GC_disable (); t_ptr = GC_generic_malloc (sizeof (*t_ptr), thread_gc_kind); memcpy (t_ptr, &t, sizeof t); scm_i_pthread_setspecific (scm_i_thread_key, t_ptr); #ifdef SCM_HAVE_THREAD_STORAGE_CLASS /* Cache the current thread in TLS for faster lookup. */ scm_i_current_thread = t_ptr; #endif scm_i_pthread_mutex_lock (&thread_admin_mutex); t_ptr->next_thread = all_threads; all_threads = t_ptr; thread_count++; scm_i_pthread_mutex_unlock (&thread_admin_mutex); GC_enable (); } } /* Perform second stage of thread initialisation, in guile mode. */ static void guilify_self_2 (SCM dynamic_state) { scm_i_thread *t = SCM_I_CURRENT_THREAD; t->guile_mode = 1; SCM_NEWSMOB (t->handle, scm_tc16_thread, t); t->continuation_root = scm_cons (t->handle, SCM_EOL); t->continuation_base = t->base; { size_t size = SCM_INLINE_GC_FREELIST_COUNT * sizeof (void *); t->freelists = scm_gc_malloc (size, "freelists"); t->pointerless_freelists = scm_gc_malloc (size, "atomic freelists"); } t->dynamic_state = scm_gc_typed_calloc (scm_t_dynamic_state); t->dynamic_state->thread_local_values = scm_c_make_hash_table (0); scm_set_current_dynamic_state (dynamic_state); t->dynstack.base = scm_gc_malloc (16 * sizeof (scm_t_bits), "dynstack"); t->dynstack.limit = t->dynstack.base + 16; t->dynstack.top = t->dynstack.base + SCM_DYNSTACK_HEADER_LEN; t->block_asyncs = 0; /* See note in finalizers.c:queue_finalizer_async(). */ GC_invoke_finalizers (); } static void on_thread_exit (void *v) { /* This handler is executed in non-guile mode. Note that although libgc isn't guaranteed to see thread-locals, for this thread-local that isn't an issue as we have the all_threads list. */ scm_i_thread *t = (scm_i_thread *) v, **tp; t->exited = 1; close (t->sleep_pipe[0]); close (t->sleep_pipe[1]); t->sleep_pipe[0] = t->sleep_pipe[1] = -1; scm_i_pthread_mutex_lock (&thread_admin_mutex); for (tp = &all_threads; *tp; tp = &(*tp)->next_thread) if (*tp == t) { *tp = t->next_thread; /* GC-robust */ t->next_thread = NULL; break; } thread_count--; /* If there's only one other thread, it could be the signal delivery thread, so we need to notify it to shut down by closing its read pipe. If it's not the signal delivery thread, then closing the read pipe isn't going to hurt. */ if (thread_count <= 1) scm_i_close_signal_pipe (); scm_i_pthread_mutex_unlock (&thread_admin_mutex); /* Although this thread has exited, the thread object might still be alive. Release unused memory. */ t->freelists = NULL; t->pointerless_freelists = NULL; t->dynamic_state = NULL; t->dynstack.base = NULL; t->dynstack.top = NULL; t->dynstack.limit = NULL; { struct scm_vm *vp = t->vp; t->vp = NULL; if (vp) scm_i_vm_free_stack (vp); } #ifdef SCM_HAVE_THREAD_STORAGE_CLASS scm_i_current_thread = NULL; #endif #if SCM_USE_PTHREAD_THREADS if (t->needs_unregister) GC_unregister_my_thread (); #endif } static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT; static void init_thread_key (void) { scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit); } /* Perform any initializations necessary to make the current thread known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself, if necessary. BASE is the stack base to use with GC. DYNAMIC_STATE is the set of fluid values to start with. Returns zero when the thread was known to guile already; otherwise return 1. Note that it could be the case that the thread was known to Guile, but not in guile mode (because we are within a scm_without_guile call). Check SCM_I_CURRENT_THREAD->guile_mode to be sure. New threads are put into guile mode implicitly. */ static int scm_i_init_thread_for_guile (struct GC_stack_base *base, SCM dynamic_state) { scm_i_pthread_once (&init_thread_key_once, init_thread_key); if (SCM_I_CURRENT_THREAD) { /* Thread is already known to Guile. */ return 0; } else { /* This thread has not been guilified yet. */ scm_i_pthread_mutex_lock (&scm_i_init_mutex); if (scm_initialized_p == 0) { /* First thread ever to enter Guile. Run the full initialization. */ scm_i_init_guile (base); #if SCM_USE_PTHREAD_THREADS /* Allow other threads to come in later. */ GC_allow_register_threads (); #endif scm_i_pthread_mutex_unlock (&scm_i_init_mutex); } else { int needs_unregister = 0; /* Guile is already initialized, but this thread enters it for the first time. Only initialize this thread. */ scm_i_pthread_mutex_unlock (&scm_i_init_mutex); /* Register this thread with libgc. */ #if SCM_USE_PTHREAD_THREADS if (GC_register_my_thread (base) == GC_SUCCESS) needs_unregister = 1; #endif guilify_self_1 (base, needs_unregister); guilify_self_2 (dynamic_state); } return 1; } } void scm_init_guile () { struct GC_stack_base stack_base; if (GC_get_stack_base (&stack_base) == GC_SUCCESS) scm_i_init_thread_for_guile (&stack_base, default_dynamic_state); else { fprintf (stderr, "Failed to get stack base for current thread.\n"); exit (EXIT_FAILURE); } } struct with_guile_args { GC_fn_type func; void *data; SCM dynamic_state; }; static void * with_guile_trampoline (void *data) { struct with_guile_args *args = data; return scm_c_with_continuation_barrier (args->func, args->data); } static void * with_guile (struct GC_stack_base *base, void *data) { void *res; int new_thread; scm_i_thread *t; struct with_guile_args *args = data; new_thread = scm_i_init_thread_for_guile (base, args->dynamic_state); t = SCM_I_CURRENT_THREAD; if (new_thread) { /* We are in Guile mode. */ assert (t->guile_mode); res = scm_c_with_continuation_barrier (args->func, args->data); /* Leave Guile mode. */ t->guile_mode = 0; } else if (t->guile_mode) { /* Already in Guile mode. */ res = scm_c_with_continuation_barrier (args->func, args->data); } else { /* We are not in Guile mode, either because we are not within a scm_with_guile, or because we are within a scm_without_guile. This call to scm_with_guile() could happen from anywhere on the stack, and in particular lower on the stack than when it was when this thread was first guilified. Thus, `base' must be updated. */ #if SCM_STACK_GROWS_UP if (SCM_STACK_PTR (base->mem_base) < t->base) t->base = SCM_STACK_PTR (base->mem_base); #else if (SCM_STACK_PTR (base->mem_base) > t->base) t->base = SCM_STACK_PTR (base->mem_base); #endif t->guile_mode = 1; res = GC_call_with_gc_active (with_guile_trampoline, args); t->guile_mode = 0; } return res; } static void * scm_i_with_guile (void *(*func)(void *), void *data, SCM dynamic_state) { struct with_guile_args args; args.func = func; args.data = data; args.dynamic_state = dynamic_state; return GC_call_with_stack_base (with_guile, &args); } void * scm_with_guile (void *(*func)(void *), void *data) { return scm_i_with_guile (func, data, default_dynamic_state); } void * scm_without_guile (void *(*func)(void *), void *data) { void *result; scm_i_thread *t = SCM_I_CURRENT_THREAD; if (t->guile_mode) { SCM_I_CURRENT_THREAD->guile_mode = 0; result = GC_do_blocking (func, data); SCM_I_CURRENT_THREAD->guile_mode = 1; } else /* Otherwise we're not in guile mode, so nothing to do. */ result = func (data); return result; } /*** Thread creation */ /* Because (ice-9 boot-9) loads up (ice-9 threads), we know that this variable will get loaded before a call to scm_call_with_new_thread and therefore no lock or pthread_once_t is needed. */ static SCM call_with_new_thread_var; SCM scm_call_with_new_thread (SCM thunk, SCM handler) { SCM call_with_new_thread = scm_variable_ref (call_with_new_thread_var); if (SCM_UNBNDP (handler)) return scm_call_1 (call_with_new_thread, thunk); return scm_call_2 (call_with_new_thread, thunk, handler); } typedef struct launch_data launch_data; struct launch_data { launch_data *prev; launch_data *next; SCM dynamic_state; SCM thunk; }; /* GC-protect the launch data for new threads. */ static launch_data *protected_launch_data; static scm_i_pthread_mutex_t protected_launch_data_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER; static void protect_launch_data (launch_data *data) { scm_i_pthread_mutex_lock (&protected_launch_data_lock); data->next = protected_launch_data; if (protected_launch_data) protected_launch_data->prev = data; protected_launch_data = data; scm_i_pthread_mutex_unlock (&protected_launch_data_lock); } static void unprotect_launch_data (launch_data *data) { scm_i_pthread_mutex_lock (&protected_launch_data_lock); if (data->next) data->next->prev = data->prev; if (data->prev) data->prev->next = data->next; else protected_launch_data = data->next; scm_i_pthread_mutex_unlock (&protected_launch_data_lock); } static void * really_launch (void *d) { scm_i_thread *t = SCM_I_CURRENT_THREAD; unprotect_launch_data (d); /* The thread starts with asyncs blocked. */ t->block_asyncs++; SCM_I_CURRENT_THREAD->result = scm_call_0 (((launch_data *)d)->thunk); return 0; } static void * launch_thread (void *d) { launch_data *data = (launch_data *)d; scm_i_pthread_detach (scm_i_pthread_self ()); scm_i_with_guile (really_launch, d, data->dynamic_state); return NULL; } SCM_INTERNAL SCM scm_sys_call_with_new_thread (SCM); SCM_DEFINE (scm_sys_call_with_new_thread, "%call-with-new-thread", 1, 0, 0, (SCM thunk), "") #define FUNC_NAME s_scm_sys_call_with_new_thread { launch_data *data; scm_i_pthread_t id; int err; SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME); GC_collect_a_little (); data = scm_gc_typed_calloc (launch_data); data->dynamic_state = scm_current_dynamic_state (); data->thunk = thunk; protect_launch_data (data); err = scm_i_pthread_create (&id, NULL, launch_thread, data); if (err) { errno = err; scm_syserror (NULL); } return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM scm_spawn_thread (scm_t_catch_body body, void *body_data, scm_t_catch_handler handler, void *handler_data) { SCM body_closure, handler_closure; body_closure = scm_i_make_catch_body_closure (body, body_data); handler_closure = handler == NULL ? SCM_UNDEFINED : scm_i_make_catch_handler_closure (handler, handler_data); return scm_call_with_new_thread (body_closure, handler_closure); } SCM_DEFINE (scm_yield, "yield", 0, 0, 0, (), "Move the calling thread to the end of the scheduling queue.") #define FUNC_NAME s_scm_yield { return scm_from_bool (scm_i_sched_yield ()); } #undef FUNC_NAME static SCM cancel_thread_var; SCM scm_cancel_thread (SCM thread) { scm_call_1 (scm_variable_ref (cancel_thread_var), thread); return SCM_UNSPECIFIED; } static SCM join_thread_var; SCM scm_join_thread (SCM thread) { return scm_call_1 (scm_variable_ref (join_thread_var), thread); } SCM scm_join_thread_timed (SCM thread, SCM timeout, SCM timeoutval) { SCM join_thread = scm_variable_ref (join_thread_var); if (SCM_UNBNDP (timeout)) return scm_call_1 (join_thread, thread); else if (SCM_UNBNDP (timeoutval)) return scm_call_2 (join_thread, thread, timeout); else return scm_call_3 (join_thread, thread, timeout, timeoutval); } SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0, (SCM obj), "Return @code{#t} if @var{obj} is a thread.") #define FUNC_NAME s_scm_thread_p { return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F; } #undef FUNC_NAME /* We implement our own mutex type since we want them to be 'fair', we want to do fancy things while waiting for them (like running asyncs) and we might want to add things that are nice for debugging. */ enum scm_mutex_kind { /* A standard mutex can only be locked once. If you try to lock it again from the thread that locked it to begin with (the "owner" thread), it throws an error. It can only be unlocked from the thread that locked it in the first place. */ SCM_MUTEX_STANDARD, /* A recursive mutex can be locked multiple times by its owner. It then has to be unlocked the corresponding number of times, and like standard mutexes can only be unlocked by the owner thread. */ SCM_MUTEX_RECURSIVE, /* An unowned mutex is like a standard mutex, except that it can be unlocked by any thread. A corrolary of this behavior is that a thread's attempt to lock a mutex that it already owns will block instead of signalling an error, as it could be that some other thread unlocks the mutex, allowing the owner thread to proceed. This kind of mutex is a bit strange and is here for use by SRFI-18. */ SCM_MUTEX_UNOWNED }; struct scm_mutex { scm_i_pthread_mutex_t lock; /* The thread that owns this mutex, or #f if the mutex is unlocked. */ SCM owner; /* Queue of threads waiting for this mutex. */ SCM waiting; /* For SCM_MUTEX_RECURSIVE (and only SCM_MUTEX_RECURSIVE), the recursive lock count. The first lock does not count. */ int level; }; #define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x) #define SCM_MUTEX_DATA(x) ((struct scm_mutex *) SCM_SMOB_DATA (x)) #define SCM_MUTEX_KIND(x) ((enum scm_mutex_kind) (SCM_SMOB_FLAGS (x) & 0x3)) static int scm_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED) { struct scm_mutex *m = SCM_MUTEX_DATA (mx); scm_puts ("#", port); return 1; } SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock"); SCM_SYMBOL (recursive_sym, "recursive"); SCM_DEFINE (scm_make_mutex_with_kind, "make-mutex", 0, 1, 0, (SCM kind), "Create a new mutex. If @var{kind} is not given, the mutex\n" "will be a standard non-recursive mutex. Otherwise pass\n" "@code{recursive} to make a recursive mutex, or\n" "@code{allow-external-unlock} to make a non-recursive mutex\n" "that can be unlocked from any thread.") #define FUNC_NAME s_scm_make_mutex_with_kind { enum scm_mutex_kind mkind = SCM_MUTEX_STANDARD; struct scm_mutex *m; scm_i_pthread_mutex_t lock = SCM_I_PTHREAD_MUTEX_INITIALIZER; if (!SCM_UNBNDP (kind)) { if (scm_is_eq (kind, allow_external_unlock_sym)) mkind = SCM_MUTEX_UNOWNED; else if (scm_is_eq (kind, recursive_sym)) mkind = SCM_MUTEX_RECURSIVE; else SCM_MISC_ERROR ("unsupported mutex kind: ~a", scm_list_1 (kind)); } m = scm_gc_malloc (sizeof (struct scm_mutex), "mutex"); /* Because PTHREAD_MUTEX_INITIALIZER is static, it's plain old data, and so we can just copy it. */ memcpy (&m->lock, &lock, sizeof (m->lock)); m->owner = SCM_BOOL_F; m->level = 0; m->waiting = make_queue (); return scm_new_smob (scm_tc16_mutex | (mkind << 16), (scm_t_bits) m); } #undef FUNC_NAME SCM scm_make_mutex (void) { return scm_make_mutex_with_kind (SCM_UNDEFINED); } SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0, (void), "Create a new recursive mutex. ") #define FUNC_NAME s_scm_make_recursive_mutex { return scm_make_mutex_with_kind (recursive_sym); } #undef FUNC_NAME SCM scm_lock_mutex (SCM mx) { return scm_timed_lock_mutex (mx, SCM_UNDEFINED); } static inline SCM lock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m, scm_i_thread *current_thread, scm_t_timespec *waittime) #define FUNC_NAME "lock-mutex" { scm_i_scm_pthread_mutex_lock (&m->lock); if (scm_is_eq (m->owner, SCM_BOOL_F)) { m->owner = current_thread->handle; scm_i_pthread_mutex_unlock (&m->lock); return SCM_BOOL_T; } else if (kind == SCM_MUTEX_RECURSIVE && scm_is_eq (m->owner, current_thread->handle)) { m->level++; scm_i_pthread_mutex_unlock (&m->lock); return SCM_BOOL_T; } else if (kind == SCM_MUTEX_STANDARD && scm_is_eq (m->owner, current_thread->handle)) { scm_i_pthread_mutex_unlock (&m->lock); SCM_MISC_ERROR ("mutex already locked by thread", SCM_EOL); } else while (1) { int err = block_self (m->waiting, &m->lock, waittime); if (err == 0) { if (scm_is_eq (m->owner, SCM_BOOL_F)) { m->owner = current_thread->handle; scm_i_pthread_mutex_unlock (&m->lock); return SCM_BOOL_T; } else continue; } else if (err == ETIMEDOUT) { scm_i_pthread_mutex_unlock (&m->lock); return SCM_BOOL_F; } else if (err == EINTR) { scm_i_pthread_mutex_unlock (&m->lock); scm_async_tick (); scm_i_scm_pthread_mutex_lock (&m->lock); continue; } else { /* Shouldn't happen. */ scm_i_pthread_mutex_unlock (&m->lock); errno = err; SCM_SYSERROR; } } } #undef FUNC_NAME SCM_DEFINE (scm_timed_lock_mutex, "lock-mutex", 1, 1, 0, (SCM mutex, SCM timeout), "Lock mutex @var{mutex}. If the mutex is already locked, " "the calling thread blocks until the mutex becomes available.") #define FUNC_NAME s_scm_timed_lock_mutex { scm_t_timespec cwaittime, *waittime = NULL; struct scm_mutex *m; scm_i_thread *t = SCM_I_CURRENT_THREAD; SCM ret; SCM_VALIDATE_MUTEX (1, mutex); m = SCM_MUTEX_DATA (mutex); if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout)) { to_timespec (timeout, &cwaittime); waittime = &cwaittime; } /* Specialized lock_mutex implementations according to the mutex kind. */ switch (SCM_MUTEX_KIND (mutex)) { case SCM_MUTEX_STANDARD: ret = lock_mutex (SCM_MUTEX_STANDARD, m, t, waittime); break; case SCM_MUTEX_RECURSIVE: ret = lock_mutex (SCM_MUTEX_RECURSIVE, m, t, waittime); break; case SCM_MUTEX_UNOWNED: ret = lock_mutex (SCM_MUTEX_UNOWNED, m, t, waittime); break; default: abort (); } scm_remember_upto_here_1 (mutex); return ret; } #undef FUNC_NAME static void lock_mutex_return_void (SCM mx) { (void) scm_lock_mutex (mx); } static void unlock_mutex_return_void (SCM mx) { (void) scm_unlock_mutex (mx); } void scm_dynwind_lock_mutex (SCM mutex) { scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex, SCM_F_WIND_EXPLICITLY); scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex, SCM_F_WIND_EXPLICITLY); } SCM scm_try_mutex (SCM mutex) { return scm_timed_lock_mutex (mutex, SCM_INUM0); } /* This function is static inline so that the compiler can specialize it against the mutex kind. */ static inline void unlock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m, scm_i_thread *current_thread) #define FUNC_NAME "unlock-mutex" { scm_i_scm_pthread_mutex_lock (&m->lock); if (!scm_is_eq (m->owner, current_thread->handle)) { if (scm_is_eq (m->owner, SCM_BOOL_F)) { scm_i_pthread_mutex_unlock (&m->lock); SCM_MISC_ERROR ("mutex not locked", SCM_EOL); } if (kind != SCM_MUTEX_UNOWNED) { scm_i_pthread_mutex_unlock (&m->lock); SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL); } } if (kind == SCM_MUTEX_RECURSIVE && m->level > 0) m->level--; else { m->owner = SCM_BOOL_F; /* Wake up one waiter. */ unblock_from_queue (m->waiting); } scm_i_pthread_mutex_unlock (&m->lock); } #undef FUNC_NAME SCM_DEFINE (scm_unlock_mutex, "unlock-mutex", 1, 0, 0, (SCM mutex), "Unlocks @var{mutex}. The calling thread must already hold\n" "the lock on @var{mutex}, unless the mutex was created with\n" "the @code{allow-external-unlock} option; otherwise an error\n" "will be signalled.") #define FUNC_NAME s_scm_unlock_mutex { struct scm_mutex *m; scm_i_thread *t = SCM_I_CURRENT_THREAD; SCM_VALIDATE_MUTEX (1, mutex); m = SCM_MUTEX_DATA (mutex); /* Specialized unlock_mutex implementations according to the mutex kind. */ switch (SCM_MUTEX_KIND (mutex)) { case SCM_MUTEX_STANDARD: unlock_mutex (SCM_MUTEX_STANDARD, m, t); break; case SCM_MUTEX_RECURSIVE: unlock_mutex (SCM_MUTEX_RECURSIVE, m, t); break; case SCM_MUTEX_UNOWNED: unlock_mutex (SCM_MUTEX_UNOWNED, m, t); break; default: abort (); } scm_remember_upto_here_1 (mutex); return SCM_BOOL_T; } #undef FUNC_NAME SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0, (SCM obj), "Return @code{#t} if @var{obj} is a mutex.") #define FUNC_NAME s_scm_mutex_p { return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F; } #undef FUNC_NAME SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0, (SCM mx), "Return the thread owning @var{mx}, or @code{#f}.") #define FUNC_NAME s_scm_mutex_owner { SCM owner; struct scm_mutex *m = NULL; SCM_VALIDATE_MUTEX (1, mx); m = SCM_MUTEX_DATA (mx); scm_i_pthread_mutex_lock (&m->lock); owner = m->owner; scm_i_pthread_mutex_unlock (&m->lock); return owner; } #undef FUNC_NAME SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0, (SCM mx), "Return the lock level of mutex @var{mx}.") #define FUNC_NAME s_scm_mutex_level { SCM_VALIDATE_MUTEX (1, mx); if (SCM_MUTEX_KIND (mx) == SCM_MUTEX_RECURSIVE) return scm_from_int (SCM_MUTEX_DATA (mx)->level + 1); else if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F)) return SCM_INUM0; else return SCM_INUM1; } #undef FUNC_NAME SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0, (SCM mx), "Returns @code{#t} if the mutex @var{mx} is locked.") #define FUNC_NAME s_scm_mutex_locked_p { SCM_VALIDATE_MUTEX (1, mx); if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F)) return SCM_BOOL_F; else return SCM_BOOL_T; } #undef FUNC_NAME struct scm_cond { scm_i_pthread_mutex_t lock; SCM waiting; /* the threads waiting for this condition. */ }; #define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x) #define SCM_CONDVAR_DATA(x) ((struct scm_cond *) SCM_SMOB_DATA (x)) static int scm_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED) { struct scm_cond *c = SCM_CONDVAR_DATA (cv); scm_puts ("#", port); return 1; } SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0, (void), "Make a new condition variable.") #define FUNC_NAME s_scm_make_condition_variable { struct scm_cond *c; SCM cv; c = scm_gc_malloc (sizeof (struct scm_cond), "condition variable"); c->waiting = SCM_EOL; SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c); c->waiting = make_queue (); return cv; } #undef FUNC_NAME static inline SCM timed_wait (enum scm_mutex_kind kind, struct scm_mutex *m, struct scm_cond *c, scm_i_thread *current_thread, scm_t_timespec *waittime) #define FUNC_NAME "wait-condition-variable" { scm_i_scm_pthread_mutex_lock (&m->lock); if (!scm_is_eq (m->owner, current_thread->handle)) { if (scm_is_eq (m->owner, SCM_BOOL_F)) { scm_i_pthread_mutex_unlock (&m->lock); SCM_MISC_ERROR ("mutex not locked", SCM_EOL); } if (kind != SCM_MUTEX_UNOWNED) { scm_i_pthread_mutex_unlock (&m->lock); SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL); } } while (1) { int err = 0; /* Unlock the mutex. */ if (kind == SCM_MUTEX_RECURSIVE && m->level > 0) m->level--; else { m->owner = SCM_BOOL_F; /* Wake up one waiter. */ unblock_from_queue (m->waiting); } /* Wait for someone to signal the cond, a timeout, or an interrupt. */ err = block_self (c->waiting, &m->lock, waittime); /* We woke up for some reason. Reacquire the mutex before doing anything else. FIXME: We disable interrupts while reacquiring the mutex. If we allow interrupts here, there's the risk of a nonlocal exit before we reaquire the mutex, which would be visible to user code. For example the unwind handler in (with-mutex m (wait-condition-variable c m)) that tries to unlock M could see M in an already-unlocked state, if an interrupt while waiting on C caused the wait to abort and the woke thread lost the race to reacquire M. That's not great. Maybe it's necessary but for now we just disable interrupts while reaquiring a mutex after a wait. */ current_thread->block_asyncs++; if (kind == SCM_MUTEX_RECURSIVE && scm_is_eq (m->owner, current_thread->handle)) { m->level++; scm_i_pthread_mutex_unlock (&m->lock); } else while (1) { if (scm_is_eq (m->owner, SCM_BOOL_F)) { m->owner = current_thread->handle; scm_i_pthread_mutex_unlock (&m->lock); break; } block_self (m->waiting, &m->lock, waittime); } current_thread->block_asyncs--; /* Now that we have the mutex again, handle the return value. */ if (err == 0) return SCM_BOOL_T; else if (err == ETIMEDOUT) return SCM_BOOL_F; else if (err == EINTR) /* Let caller run scm_async_tick() and loop. */ return SCM_BOOL_T; else { /* Shouldn't happen. */ errno = err; SCM_SYSERROR; } } } #undef FUNC_NAME SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0, (SCM cond, SCM mutex, SCM timeout), "Wait until condition variable @var{cv} has been signalled. While waiting, " "mutex @var{mx} is atomically unlocked (as with @code{unlock-mutex}) and " "is locked again when this function returns. When @var{t} is given, " "it specifies a point in time where the waiting should be aborted. It " "can be either a integer as returned by @code{current-time} or a pair " "as returned by @code{gettimeofday}. When the waiting is aborted the " "mutex is locked and @code{#f} is returned. When the condition " "variable is in fact signalled, the mutex is also locked and @code{#t} " "is returned. ") #define FUNC_NAME s_scm_timed_wait_condition_variable { scm_t_timespec waittime_val, *waittime = NULL; struct scm_cond *c; struct scm_mutex *m; scm_i_thread *t = SCM_I_CURRENT_THREAD; SCM ret; SCM_VALIDATE_CONDVAR (1, cond); SCM_VALIDATE_MUTEX (2, mutex); c = SCM_CONDVAR_DATA (cond); m = SCM_MUTEX_DATA (mutex); if (!SCM_UNBNDP (timeout)) { to_timespec (timeout, &waittime_val); waittime = &waittime_val; } /* Specialized timed_wait implementations according to the mutex kind. */ switch (SCM_MUTEX_KIND (mutex)) { case SCM_MUTEX_STANDARD: ret = timed_wait (SCM_MUTEX_STANDARD, m, c, t, waittime); break; case SCM_MUTEX_RECURSIVE: ret = timed_wait (SCM_MUTEX_RECURSIVE, m, c, t, waittime); break; case SCM_MUTEX_UNOWNED: ret = timed_wait (SCM_MUTEX_UNOWNED, m, c, t, waittime); break; default: abort (); } scm_remember_upto_here_2 (mutex, cond); return ret; } #undef FUNC_NAME SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0, (SCM cv), "Wake up one thread that is waiting for @var{cv}") #define FUNC_NAME s_scm_signal_condition_variable { struct scm_cond *c; SCM_VALIDATE_CONDVAR (1, cv); c = SCM_CONDVAR_DATA (cv); unblock_from_queue (c->waiting); return SCM_BOOL_T; } #undef FUNC_NAME SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0, (SCM cv), "Wake up all threads that are waiting for @var{cv}. ") #define FUNC_NAME s_scm_broadcast_condition_variable { struct scm_cond *c; SCM_VALIDATE_CONDVAR (1, cv); c = SCM_CONDVAR_DATA (cv); while (scm_is_true (unblock_from_queue (c->waiting))) ; return SCM_BOOL_T; } #undef FUNC_NAME SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0, (SCM obj), "Return @code{#t} if @var{obj} is a condition variable.") #define FUNC_NAME s_scm_condition_variable_p { return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F; } #undef FUNC_NAME /*** Select */ struct select_args { int nfds; fd_set *read_fds; fd_set *write_fds; fd_set *except_fds; struct timeval *timeout; int result; int errno_value; }; static void * do_std_select (void *args) { struct select_args *select_args; select_args = (struct select_args *) args; select_args->result = select (select_args->nfds, select_args->read_fds, select_args->write_fds, select_args->except_fds, select_args->timeout); select_args->errno_value = errno; return NULL; } int scm_std_select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { fd_set my_readfds; int res, eno, wakeup_fd; scm_i_thread *t = SCM_I_CURRENT_THREAD; struct select_args args; if (readfds == NULL) { FD_ZERO (&my_readfds); readfds = &my_readfds; } if (scm_i_prepare_to_wait_on_fd (t, t->sleep_pipe[1])) { eno = EINTR; res = -1; } else { wakeup_fd = t->sleep_pipe[0]; FD_SET (wakeup_fd, readfds); if (wakeup_fd >= nfds) nfds = wakeup_fd+1; args.nfds = nfds; args.read_fds = readfds; args.write_fds = writefds; args.except_fds = exceptfds; args.timeout = timeout; /* Explicitly cooperate with the GC. */ scm_without_guile (do_std_select, &args); res = args.result; eno = args.errno_value; scm_i_wait_finished (t); if (res > 0 && FD_ISSET (wakeup_fd, readfds)) { char dummy; full_read (wakeup_fd, &dummy, 1); FD_CLR (wakeup_fd, readfds); res -= 1; if (res == 0) { eno = EINTR; res = -1; } } } errno = eno; return res; } /* Convenience API for blocking while in guile mode. */ #if SCM_USE_PTHREAD_THREADS /* It seems reasonable to not run procedures related to mutex and condition variables within `GC_do_blocking ()' since, (i) the GC can operate even without it, and (ii) the only potential gain would be GC latency. See http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251 for a discussion of the pros and cons. */ int scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex) { int res = scm_i_pthread_mutex_lock (mutex); return res; } static void do_unlock (void *data) { scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data); } void scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex) { scm_i_scm_pthread_mutex_lock (mutex); scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY); } int scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex) { return scm_i_pthread_cond_wait (cond, mutex); } int scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex, const scm_t_timespec *wt) { return scm_i_pthread_cond_timedwait (cond, mutex, wt); } #endif static void do_unlock_with_asyncs (void *data) { scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data); SCM_I_CURRENT_THREAD->block_asyncs--; } void scm_i_dynwind_pthread_mutex_lock_block_asyncs (scm_i_pthread_mutex_t *mutex) { SCM_I_CURRENT_THREAD->block_asyncs++; scm_i_scm_pthread_mutex_lock (mutex); scm_dynwind_unwind_handler (do_unlock_with_asyncs, mutex, SCM_F_WIND_EXPLICITLY); } unsigned long scm_std_usleep (unsigned long usecs) { struct timeval tv; tv.tv_usec = usecs % 1000000; tv.tv_sec = usecs / 1000000; scm_std_select (0, NULL, NULL, NULL, &tv); return tv.tv_sec * 1000000 + tv.tv_usec; } unsigned int scm_std_sleep (unsigned int secs) { struct timeval tv; tv.tv_usec = 0; tv.tv_sec = secs; scm_std_select (0, NULL, NULL, NULL, &tv); return tv.tv_sec; } /*** Misc */ SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0, (void), "Return the thread that called this function.") #define FUNC_NAME s_scm_current_thread { return SCM_I_CURRENT_THREAD->handle; } #undef FUNC_NAME static SCM scm_c_make_list (size_t n, SCM fill) { SCM res = SCM_EOL; while (n-- > 0) res = scm_cons (fill, res); return res; } SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0, (void), "Return a list of all threads.") #define FUNC_NAME s_scm_all_threads { /* We can not allocate while holding the thread_admin_mutex because of the way GC is done. */ int n = thread_count; scm_i_thread *t; SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l; scm_i_pthread_mutex_lock (&thread_admin_mutex); l = &list; for (t = all_threads; t && n > 0; t = t->next_thread) { if (t != scm_i_signal_delivery_thread) { SCM_SETCAR (*l, t->handle); l = SCM_CDRLOC (*l); } n--; } *l = SCM_EOL; scm_i_pthread_mutex_unlock (&thread_admin_mutex); return list; } #undef FUNC_NAME SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0, (SCM thread), "Return @code{#t} iff @var{thread} has exited.\n") #define FUNC_NAME s_scm_thread_exited_p { return scm_from_bool (scm_c_thread_exited_p (thread)); } #undef FUNC_NAME int scm_c_thread_exited_p (SCM thread) #define FUNC_NAME s_scm_thread_exited_p { scm_i_thread *t; SCM_VALIDATE_THREAD (1, thread); t = SCM_I_THREAD_DATA (thread); return t->exited; } #undef FUNC_NAME SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0, (void), "Return the total number of processors of the machine, which\n" "is guaranteed to be at least 1. A ``processor'' here is a\n" "thread execution unit, which can be either:\n\n" "@itemize\n" "@item an execution core in a (possibly multi-core) chip, in a\n" " (possibly multi- chip) module, in a single computer, or\n" "@item a thread execution unit inside a core in the case of\n" " @dfn{hyper-threaded} CPUs.\n" "@end itemize\n\n" "Which of the two definitions is used, is unspecified.\n") #define FUNC_NAME s_scm_total_processor_count { return scm_from_ulong (num_processors (NPROC_ALL)); } #undef FUNC_NAME SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0, (void), "Like @code{total-processor-count}, but return the number of\n" "processors available to the current process. See\n" "@code{setaffinity} and @code{getaffinity} for more\n" "information.\n") #define FUNC_NAME s_scm_current_processor_count { return scm_from_ulong (num_processors (NPROC_CURRENT)); } #undef FUNC_NAME static scm_i_pthread_cond_t wake_up_cond; static int threads_initialized_p = 0; /*** Initialization */ scm_i_pthread_mutex_t scm_i_misc_mutex; #if SCM_USE_PTHREAD_THREADS pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1]; #endif void scm_threads_prehistory (void *base) { #if SCM_USE_PTHREAD_THREADS pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive); pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive, PTHREAD_MUTEX_RECURSIVE); #endif scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL); scm_i_pthread_cond_init (&wake_up_cond, NULL); thread_gc_kind = GC_new_kind (GC_new_free_list (), GC_MAKE_PROC (GC_new_proc (thread_mark), 0), 0, 1); guilify_self_1 ((struct GC_stack_base *) base, 0); } scm_t_bits scm_tc16_thread; scm_t_bits scm_tc16_mutex; scm_t_bits scm_tc16_condvar; static void scm_init_ice_9_threads (void *unused) { #include "libguile/threads.x" cancel_thread_var = scm_module_variable (scm_current_module (), scm_from_latin1_symbol ("cancel-thread")); join_thread_var = scm_module_variable (scm_current_module (), scm_from_latin1_symbol ("join-thread")); call_with_new_thread_var = scm_module_variable (scm_current_module (), scm_from_latin1_symbol ("call-with-new-thread")); } void scm_init_threads () { scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_i_thread)); scm_set_smob_print (scm_tc16_thread, thread_print); scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (struct scm_mutex)); scm_set_smob_print (scm_tc16_mutex, scm_mutex_print); scm_tc16_condvar = scm_make_smob_type ("condition-variable", sizeof (struct scm_cond)); scm_set_smob_print (scm_tc16_condvar, scm_cond_print); default_dynamic_state = SCM_BOOL_F; guilify_self_2 (scm_i_make_initial_dynamic_state ()); threads_initialized_p = 1; scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION, "scm_init_ice_9_threads", scm_init_ice_9_threads, NULL); } void scm_init_threads_default_dynamic_state () { default_dynamic_state = scm_current_dynamic_state (); } /* IA64-specific things. */ #ifdef __ia64__ # ifdef __hpux # include # include void * scm_ia64_register_backing_store_base (void) { struct pst_vm_status vm_status; int i = 0; while (pstat_getprocvm (&vm_status, sizeof (vm_status), 0, i++) == 1) if (vm_status.pst_type == PS_RSESTACK) return (void *) vm_status.pst_vaddr; abort (); } void * scm_ia64_ar_bsp (const void *ctx) { uint64_t bsp; __uc_get_ar_bsp (ctx, &bsp); return (void *) bsp; } # endif /* hpux */ # ifdef linux # include void * scm_ia64_register_backing_store_base (void) { extern void *__libc_ia64_register_backing_store_base; return __libc_ia64_register_backing_store_base; } void * scm_ia64_ar_bsp (const void *opaque) { const ucontext_t *ctx = opaque; return (void *) ctx->uc_mcontext.sc_ar_bsp; } # endif /* linux */ # ifdef __FreeBSD__ # include void * scm_ia64_register_backing_store_base (void) { return (void *)0x8000000000000000; } void * scm_ia64_ar_bsp (const void *opaque) { const ucontext_t *ctx = opaque; return (void *)(ctx->uc_mcontext.mc_special.bspstore + ctx->uc_mcontext.mc_special.ndirty); } # endif /* __FreeBSD__ */ #endif /* __ia64__ */ /* Local Variables: c-file-style: "gnu" End: */