/* Copyright (C) 2001, 2009, 2010, 2011, 2012 * 2013, 2014, 2015 Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 3 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA */ #if HAVE_CONFIG_H # include #endif #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include #include #include #include #include #include #include #include "_scm.h" #include "elf.h" #include "programs.h" #include "loader.h" /* This file contains the loader for Guile's on-disk format: ELF with some custom tags in the dynamic segment. */ #if SIZEOF_SCM_T_BITS == 4 #define Elf_Half Elf32_Half #define Elf_Word Elf32_Word #define Elf_Ehdr Elf32_Ehdr #define ELFCLASS ELFCLASS32 #define Elf_Phdr Elf32_Phdr #define Elf_Dyn Elf32_Dyn #elif SIZEOF_SCM_T_BITS == 8 #define Elf_Half Elf64_Half #define Elf_Word Elf64_Word #define Elf_Ehdr Elf64_Ehdr #define ELFCLASS ELFCLASS64 #define Elf_Phdr Elf64_Phdr #define Elf_Dyn Elf64_Dyn #else #error #endif #define DT_LOGUILE 0x37146000 /* Start of Guile-specific */ #define DT_GUILE_GC_ROOT 0x37146000 /* Offset of GC roots */ #define DT_GUILE_GC_ROOT_SZ 0x37146001 /* Size in machine words of GC roots */ #define DT_GUILE_ENTRY 0x37146002 /* Address of entry thunk */ #define DT_GUILE_VM_VERSION 0x37146003 /* Bytecode version */ #define DT_GUILE_FRAME_MAPS 0x37146004 /* Frame maps */ #define DT_HIGUILE 0x37146fff /* End of Guile-specific */ #ifdef WORDS_BIGENDIAN #define ELFDATA ELFDATA2MSB #else #define ELFDATA ELFDATA2LSB #endif /* The page size. */ static size_t page_size; static void register_elf (char *data, size_t len, char *frame_maps); enum bytecode_kind { BYTECODE_KIND_NONE, BYTECODE_KIND_GUILE_2_2 }; static SCM pointer_to_procedure (enum bytecode_kind bytecode_kind, char *ptr) { switch (bytecode_kind) { case BYTECODE_KIND_GUILE_2_2: { return scm_i_make_program ((scm_t_uint32 *) ptr); } case BYTECODE_KIND_NONE: default: abort (); } } static const char* check_elf_header (const Elf_Ehdr *header) { if (!(header->e_ident[EI_MAG0] == ELFMAG0 && header->e_ident[EI_MAG1] == ELFMAG1 && header->e_ident[EI_MAG2] == ELFMAG2 && header->e_ident[EI_MAG3] == ELFMAG3)) return "not an ELF file"; if (header->e_ident[EI_CLASS] != ELFCLASS) return "ELF file does not have native word size"; if (header->e_ident[EI_DATA] != ELFDATA) return "ELF file does not have native byte order"; if (header->e_ident[EI_VERSION] != EV_CURRENT) return "bad ELF version"; if (header->e_ident[EI_OSABI] != ELFOSABI_STANDALONE) return "unexpected OS ABI"; if (header->e_ident[EI_ABIVERSION] != 0) return "unexpected ABI version"; if (header->e_type != ET_DYN) return "unexpected ELF type"; if (header->e_machine != EM_NONE) return "unexpected machine"; if (header->e_version != EV_CURRENT) return "unexpected ELF version"; if (header->e_ehsize != sizeof *header) return "unexpected header size"; if (header->e_phentsize != sizeof (Elf_Phdr)) return "unexpected program header size"; return NULL; } #define IS_ALIGNED(offset, alignment) \ (!((offset) & ((alignment) - 1))) #define ALIGN(offset, alignment) \ ((offset + (alignment - 1)) & ~(alignment - 1)) /* Return the alignment required by the ELF at DATA, of LEN bytes. */ static size_t elf_alignment (const char *data, size_t len) { Elf_Ehdr *header; int i; size_t alignment = 8; if (len < sizeof(Elf_Ehdr)) return alignment; header = (Elf_Ehdr *) data; if (header->e_phoff + header->e_phnum * header->e_phentsize >= len) return alignment; for (i = 0; i < header->e_phnum; i++) { Elf_Phdr *phdr; const char *phdr_addr = data + header->e_phoff + i * header->e_phentsize; if (!IS_ALIGNED ((scm_t_uintptr) phdr_addr, alignof_type (Elf_Phdr))) return alignment; phdr = (Elf_Phdr *) phdr_addr; if (phdr->p_align & (phdr->p_align - 1)) return alignment; if (phdr->p_align > alignment) alignment = phdr->p_align; } return alignment; } /* This function leaks the memory that it allocates. */ static char* alloc_aligned (size_t len, unsigned alignment) { char *ret; if (alignment == 8) { /* FIXME: Assert that we actually have an 8-byte-aligned malloc. */ ret = malloc (len); } #if defined(HAVE_SYS_MMAN_H) && defined(HAVE_MAP_ANONYMOUS) else if (alignment == page_size) { ret = mmap (NULL, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (ret == MAP_FAILED) scm_syserror ("load-thunk-from-memory"); } #endif else { if (len + alignment < len) abort (); ret = malloc (len + alignment - 1); if (!ret) abort (); ret = (char *) ALIGN ((scm_t_uintptr) ret, (scm_t_uintptr) alignment); } return ret; } static char* copy_and_align_elf_data (const char *data, size_t len) { size_t alignment; char *copy; alignment = elf_alignment (data, len); copy = alloc_aligned (len, alignment); memcpy(copy, data, len); return copy; } #ifdef HAVE_SYS_MMAN_H static int segment_flags_to_prot (Elf_Word flags) { int prot = 0; if (flags & PF_X) prot |= PROT_EXEC; if (flags & PF_W) prot |= PROT_WRITE; if (flags & PF_R) prot |= PROT_READ; return prot; } #endif static char* process_dynamic_segment (char *base, Elf_Phdr *dyn_phdr, SCM *init_out, SCM *entry_out, char **frame_maps_out) { char *dyn_addr = base + dyn_phdr->p_vaddr; Elf_Dyn *dyn = (Elf_Dyn *) dyn_addr; size_t i, dyn_size = dyn_phdr->p_memsz / sizeof (Elf_Dyn); char *init = 0, *gc_root = 0, *entry = 0, *frame_maps = 0; scm_t_ptrdiff gc_root_size = 0; enum bytecode_kind bytecode_kind = BYTECODE_KIND_NONE; for (i = 0; i < dyn_size; i++) { if (dyn[i].d_tag == DT_NULL) break; switch (dyn[i].d_tag) { case DT_INIT: if (init) return "duplicate DT_INIT"; init = base + dyn[i].d_un.d_val; break; case DT_GUILE_GC_ROOT: if (gc_root) return "duplicate DT_GUILE_GC_ROOT"; gc_root = base + dyn[i].d_un.d_val; break; case DT_GUILE_GC_ROOT_SZ: if (gc_root_size) return "duplicate DT_GUILE_GC_ROOT_SZ"; gc_root_size = dyn[i].d_un.d_val; break; case DT_GUILE_ENTRY: if (entry) return "duplicate DT_GUILE_ENTRY"; entry = base + dyn[i].d_un.d_val; break; case DT_GUILE_VM_VERSION: if (bytecode_kind != BYTECODE_KIND_NONE) return "duplicate DT_GUILE_VM_VERSION"; { scm_t_uint16 major = dyn[i].d_un.d_val >> 16; scm_t_uint16 minor = dyn[i].d_un.d_val & 0xffff; switch (major) { case 0x0202: bytecode_kind = BYTECODE_KIND_GUILE_2_2; /* As we get closer to 2.2, we will allow for backwards compatibility and we can change this test to ">" instead of "!=". However until then, to deal with VM churn it's best to keep these things in lock-step. */ if (minor != SCM_OBJCODE_MINOR_VERSION) return "incompatible bytecode version"; break; default: return "incompatible bytecode kind"; } break; } case DT_GUILE_FRAME_MAPS: if (frame_maps) return "duplicate DT_GUILE_FRAME_MAPS"; frame_maps = base + dyn[i].d_un.d_val; break; } } if (!entry) return "missing DT_GUILE_ENTRY"; switch (bytecode_kind) { case BYTECODE_KIND_GUILE_2_2: if ((scm_t_uintptr) init % 4) return "unaligned DT_INIT"; if ((scm_t_uintptr) entry % 4) return "unaligned DT_GUILE_ENTRY"; break; case BYTECODE_KIND_NONE: default: return "missing DT_GUILE_VM_VERSION"; } if (gc_root) GC_add_roots (gc_root, gc_root + gc_root_size); *init_out = init ? pointer_to_procedure (bytecode_kind, init) : SCM_BOOL_F; *entry_out = pointer_to_procedure (bytecode_kind, entry); *frame_maps_out = frame_maps; return NULL; } #define ABORT(msg) do { err_msg = msg; goto cleanup; } while (0) static SCM load_thunk_from_memory (char *data, size_t len, int is_read_only) #define FUNC_NAME "load-thunk-from-memory" { Elf_Ehdr *header; Elf_Phdr *ph; const char *err_msg = 0; size_t n, alignment = 8; int i; int dynamic_segment = -1; SCM init = SCM_BOOL_F, entry = SCM_BOOL_F; char *frame_maps = 0; if (len < sizeof *header) ABORT ("object file too small"); header = (Elf_Ehdr*) data; if ((err_msg = check_elf_header (header))) goto cleanup; if (header->e_phnum == 0) ABORT ("no loadable segments"); n = header->e_phnum; if (len < header->e_phoff + n * sizeof (Elf_Phdr)) ABORT ("object file too small"); ph = (Elf_Phdr*) (data + header->e_phoff); /* Check that the segment table is sane. */ for (i = 0; i < n; i++) { if (ph[i].p_filesz != ph[i].p_memsz) ABORT ("expected p_filesz == p_memsz"); if (!ph[i].p_flags) ABORT ("expected nonzero segment flags"); if (ph[i].p_align < alignment) { if (ph[i].p_align % alignment) ABORT ("expected new alignment to be multiple of old"); alignment = ph[i].p_align; } if (ph[i].p_type == PT_DYNAMIC) { if (dynamic_segment >= 0) ABORT ("expected only one PT_DYNAMIC segment"); dynamic_segment = i; continue; } if (ph[i].p_type != PT_LOAD) ABORT ("unknown segment type"); if (i == 0) { if (ph[i].p_vaddr != 0) ABORT ("first loadable vaddr is not 0"); } else { if (ph[i].p_vaddr < ph[i-1].p_vaddr + ph[i-1].p_memsz) ABORT ("overlapping segments"); if (ph[i].p_offset + ph[i].p_filesz > len) ABORT ("segment beyond end of byte array"); } } if (dynamic_segment < 0) ABORT ("no PT_DYNAMIC segment"); /* The ELF images that Guile currently emits have segments that are aligned on 64 KB boundaries, which might be larger than the actual page size (usually 4 KB). However Guile doesn't actually use the absolute addresses at all. All Guile needs is for the loaded image to be able to make the data section writable (for the mmap path), and for that the segment just needs to be page-aligned, and a page is always bigger than Guile's minimum alignment. Since we know (for the mmap path) that the base _is_ page-aligned, we proceed ahead even if the image alignment is greater than the page size. */ if (!IS_ALIGNED ((scm_t_uintptr) data, alignment) && !IS_ALIGNED (alignment, page_size)) ABORT ("incorrectly aligned base"); /* Allow writes to writable pages. */ if (is_read_only) { #ifdef HAVE_SYS_MMAN_H for (i = 0; i < n; i++) { if (ph[i].p_type != PT_LOAD) continue; if (ph[i].p_flags == PF_R) continue; if (ph[i].p_align < page_size) continue; if (mprotect (data + ph[i].p_vaddr, ph[i].p_memsz, segment_flags_to_prot (ph[i].p_flags))) goto cleanup; } #else ABORT ("expected writable pages"); #endif } if ((err_msg = process_dynamic_segment (data, &ph[dynamic_segment], &init, &entry, &frame_maps))) goto cleanup; if (scm_is_true (init)) scm_call_0 (init); register_elf (data, len, frame_maps); /* Finally! Return the thunk. */ return entry; cleanup: { if (errno) SCM_SYSERROR; scm_misc_error (FUNC_NAME, err_msg ? err_msg : "error loading ELF file", SCM_EOL); } } #undef FUNC_NAME static char* map_file_contents (int fd, size_t len, int *is_read_only) #define FUNC_NAME "load-thunk-from-file" { char *data; #ifdef HAVE_SYS_MMAN_H data = mmap (NULL, len, PROT_READ, MAP_PRIVATE, fd, 0); if (data == MAP_FAILED) SCM_SYSERROR; *is_read_only = 1; #else if (lseek (fd, 0, SEEK_SET) < 0) { int errno_save = errno; (void) close (fd); errno = errno_save; SCM_SYSERROR; } /* Given that we are using the read fallback, optimistically assume that the .go files were made with 8-byte alignment. alignment. */ data = malloc (len); if (!data) { (void) close (fd); scm_misc_error (FUNC_NAME, "failed to allocate ~A bytes", scm_list_1 (scm_from_size_t (len))); } if (full_read (fd, data, len) != len) { int errno_save = errno; (void) close (fd); errno = errno_save; if (errno) SCM_SYSERROR; scm_misc_error (FUNC_NAME, "short read while loading objcode", SCM_EOL); } /* If our optimism failed, fall back. */ { unsigned alignment = elf_alignment (data, len); if (alignment != 8) { char *copy = copy_and_align_elf_data (data, len); free (data); data = copy; } } *is_read_only = 0; #endif return data; } #undef FUNC_NAME SCM_DEFINE (scm_load_thunk_from_file, "load-thunk-from-file", 1, 0, 0, (SCM filename), "") #define FUNC_NAME s_scm_load_thunk_from_file { char *c_filename; int fd, is_read_only; off_t end; char *data; SCM_VALIDATE_STRING (1, filename); c_filename = scm_to_locale_string (filename); fd = open (c_filename, O_RDONLY | O_BINARY | O_CLOEXEC); free (c_filename); if (fd < 0) SCM_SYSERROR; end = lseek (fd, 0, SEEK_END); if (end < 0) SCM_SYSERROR; data = map_file_contents (fd, end, &is_read_only); (void) close (fd); return load_thunk_from_memory (data, end, is_read_only); } #undef FUNC_NAME SCM_DEFINE (scm_load_thunk_from_memory, "load-thunk-from-memory", 1, 0, 0, (SCM bv), "") #define FUNC_NAME s_scm_load_thunk_from_memory { char *data; size_t len; SCM_VALIDATE_BYTEVECTOR (1, bv); data = (char *) SCM_BYTEVECTOR_CONTENTS (bv); len = SCM_BYTEVECTOR_LENGTH (bv); /* Copy data in order to align it, to trace its GC roots and writable sections, and to keep it in memory. */ data = copy_and_align_elf_data (data, len); return load_thunk_from_memory (data, len, 0); } #undef FUNC_NAME struct mapped_elf_image { char *start; char *end; char *frame_maps; }; static struct mapped_elf_image *mapped_elf_images = NULL; static size_t mapped_elf_images_count = 0; static size_t mapped_elf_images_allocated = 0; static size_t find_mapped_elf_insertion_index (char *ptr) { /* "mapped_elf_images_count" must never be dereferenced. */ size_t start = 0, end = mapped_elf_images_count; while (start < end) { size_t n = start + (end - start) / 2; if (ptr < mapped_elf_images[n].end) end = n; else start = n + 1; } return start; } static void register_elf (char *data, size_t len, char *frame_maps) { scm_i_pthread_mutex_lock (&scm_i_misc_mutex); { /* My kingdom for a generic growable sorted vector library. */ if (mapped_elf_images_count == mapped_elf_images_allocated) { struct mapped_elf_image *prev; size_t n; if (mapped_elf_images_allocated) mapped_elf_images_allocated *= 2; else mapped_elf_images_allocated = 16; prev = mapped_elf_images; mapped_elf_images = scm_gc_malloc_pointerless (sizeof (*mapped_elf_images) * mapped_elf_images_allocated, "mapped elf images"); for (n = 0; n < mapped_elf_images_count; n++) { mapped_elf_images[n].start = prev[n].start; mapped_elf_images[n].end = prev[n].end; mapped_elf_images[n].frame_maps = prev[n].frame_maps; } } { size_t end; size_t n = find_mapped_elf_insertion_index (data); for (end = mapped_elf_images_count; n < end; end--) { const struct mapped_elf_image *prev = &mapped_elf_images[end - 1]; mapped_elf_images[end].start = prev->start; mapped_elf_images[end].end = prev->end; mapped_elf_images[end].frame_maps = prev->frame_maps; } mapped_elf_images_count++; mapped_elf_images[n].start = data; mapped_elf_images[n].end = data + len; mapped_elf_images[n].frame_maps = frame_maps; } } scm_i_pthread_mutex_unlock (&scm_i_misc_mutex); } static struct mapped_elf_image * find_mapped_elf_image_unlocked (char *ptr) { size_t n = find_mapped_elf_insertion_index ((char *) ptr); if (n < mapped_elf_images_count && mapped_elf_images[n].start <= ptr && ptr < mapped_elf_images[n].end) return &mapped_elf_images[n]; return NULL; } static int find_mapped_elf_image (char *ptr, struct mapped_elf_image *image) { int result; scm_i_pthread_mutex_lock (&scm_i_misc_mutex); { struct mapped_elf_image *img = find_mapped_elf_image_unlocked (ptr); if (img) { memcpy (image, img, sizeof (*image)); result = 1; } else result = 0; } scm_i_pthread_mutex_unlock (&scm_i_misc_mutex); return result; } static SCM scm_find_mapped_elf_image (SCM ip) { struct mapped_elf_image image; if (find_mapped_elf_image ((char *) scm_to_uintptr_t (ip), &image)) { signed char *data = (signed char *) image.start; size_t len = image.end - image.start; return scm_c_take_gc_bytevector (data, len, SCM_BOOL_F); } return SCM_BOOL_F; } static SCM scm_all_mapped_elf_images (void) { SCM result = SCM_EOL; scm_i_pthread_mutex_lock (&scm_i_misc_mutex); { size_t n; for (n = 0; n < mapped_elf_images_count; n++) { signed char *data = (signed char *) mapped_elf_images[n].start; size_t len = mapped_elf_images[n].end - mapped_elf_images[n].start; result = scm_cons (scm_c_take_gc_bytevector (data, len, SCM_BOOL_F), result); } } scm_i_pthread_mutex_unlock (&scm_i_misc_mutex); return result; } struct frame_map_prefix { scm_t_uint32 text_offset; scm_t_uint32 maps_offset; }; struct frame_map_header { scm_t_uint32 addr; scm_t_uint32 map_offset; }; verify (sizeof (struct frame_map_prefix) == 8); verify (sizeof (struct frame_map_header) == 8); const scm_t_uint8 * scm_find_slot_map_unlocked (const scm_t_uint32 *ip) { struct mapped_elf_image *image; char *base; struct frame_map_prefix *prefix; struct frame_map_header *headers; scm_t_uintptr addr = (scm_t_uintptr) ip; size_t start, end; image = find_mapped_elf_image_unlocked ((char *) ip); if (!image || !image->frame_maps) return NULL; base = image->frame_maps; prefix = (struct frame_map_prefix *) base; headers = (struct frame_map_header *) (base + sizeof (*prefix)); if (addr < ((scm_t_uintptr) image->start) + prefix->text_offset) return NULL; addr -= ((scm_t_uintptr) image->start) + prefix->text_offset; start = 0; end = (prefix->maps_offset - sizeof (*prefix)) / sizeof (*headers); if (end == 0 || addr > headers[end - 1].addr) return NULL; while (start < end) { size_t n = start + (end - start) / 2; if (addr == headers[n].addr) return (const scm_t_uint8*) (base + headers[n].map_offset); else if (addr < headers[n].addr) end = n; else start = n + 1; } return NULL; } void scm_bootstrap_loader (void) { page_size = getpagesize (); /* page_size should be a power of two. */ if (page_size & (page_size - 1)) abort (); scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION, "scm_init_loader", (scm_t_extension_init_func)scm_init_loader, NULL); } void scm_init_loader (void) { #ifndef SCM_MAGIC_SNARFER #include "libguile/loader.x" #endif scm_c_define_gsubr ("find-mapped-elf-image", 1, 0, 0, (scm_t_subr) scm_find_mapped_elf_image); scm_c_define_gsubr ("all-mapped-elf-images", 0, 0, 0, (scm_t_subr) scm_all_mapped_elf_images); } /* Local Variables: c-file-style: "gnu" End: */