/* Test for NaN that does not need libm. Copyright (C) 2007-2011 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2007. */ #include /* Specification. */ #ifdef USE_LONG_DOUBLE /* Specification found in math.h or isnanl-nolibm.h. */ extern int rpl_isnanl (long double x) _GL_ATTRIBUTE_CONST; #elif ! defined USE_FLOAT /* Specification found in math.h or isnand-nolibm.h. */ extern int rpl_isnand (double x); #else /* defined USE_FLOAT */ /* Specification found in math.h or isnanf-nolibm.h. */ extern int rpl_isnanf (float x); #endif #include #include #include "float+.h" #ifdef USE_LONG_DOUBLE # define FUNC rpl_isnanl # define DOUBLE long double # define MAX_EXP LDBL_MAX_EXP # define MIN_EXP LDBL_MIN_EXP # if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT # define KNOWN_EXPBIT0_LOCATION # define EXPBIT0_WORD LDBL_EXPBIT0_WORD # define EXPBIT0_BIT LDBL_EXPBIT0_BIT # endif # define SIZE SIZEOF_LDBL # define L_(literal) literal##L #elif ! defined USE_FLOAT # define FUNC rpl_isnand # define DOUBLE double # define MAX_EXP DBL_MAX_EXP # define MIN_EXP DBL_MIN_EXP # if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT # define KNOWN_EXPBIT0_LOCATION # define EXPBIT0_WORD DBL_EXPBIT0_WORD # define EXPBIT0_BIT DBL_EXPBIT0_BIT # endif # define SIZE SIZEOF_DBL # define L_(literal) literal #else /* defined USE_FLOAT */ # define FUNC rpl_isnanf # define DOUBLE float # define MAX_EXP FLT_MAX_EXP # define MIN_EXP FLT_MIN_EXP # if defined FLT_EXPBIT0_WORD && defined FLT_EXPBIT0_BIT # define KNOWN_EXPBIT0_LOCATION # define EXPBIT0_WORD FLT_EXPBIT0_WORD # define EXPBIT0_BIT FLT_EXPBIT0_BIT # endif # define SIZE SIZEOF_FLT # define L_(literal) literal##f #endif #define EXP_MASK ((MAX_EXP - MIN_EXP) | 7) #define NWORDS \ ((sizeof (DOUBLE) + sizeof (unsigned int) - 1) / sizeof (unsigned int)) typedef union { DOUBLE value; unsigned int word[NWORDS]; } memory_double; int FUNC (DOUBLE x) { #ifdef KNOWN_EXPBIT0_LOCATION # if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE /* Special CPU dependent code is needed to treat bit patterns outside the IEEE 754 specification (such as Pseudo-NaNs, Pseudo-Infinities, Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals) as NaNs. These bit patterns are: - exponent = 0x0001..0x7FFF, mantissa bit 63 = 0, - exponent = 0x0000, mantissa bit 63 = 1. The NaN bit pattern is: - exponent = 0x7FFF, mantissa >= 0x8000000000000001. */ memory_double m; unsigned int exponent; m.value = x; exponent = (m.word[EXPBIT0_WORD] >> EXPBIT0_BIT) & EXP_MASK; # ifdef WORDS_BIGENDIAN /* Big endian: EXPBIT0_WORD = 0, EXPBIT0_BIT = 16. */ if (exponent == 0) return 1 & (m.word[0] >> 15); else if (exponent == EXP_MASK) return (((m.word[0] ^ 0x8000U) << 16) | m.word[1] | (m.word[2] >> 16)) != 0; else return 1 & ~(m.word[0] >> 15); # else /* Little endian: EXPBIT0_WORD = 2, EXPBIT0_BIT = 0. */ if (exponent == 0) return (m.word[1] >> 31); else if (exponent == EXP_MASK) return ((m.word[1] ^ 0x80000000U) | m.word[0]) != 0; else return (m.word[1] >> 31) ^ 1; # endif # else /* Be careful to not do any floating-point operation on x, such as x == x, because x may be a signaling NaN. */ # if defined __SUNPRO_C || defined __ICC || defined _MSC_VER \ || defined __DECC || defined __TINYC__ \ || (defined __sgi && !defined __GNUC__) /* The Sun C 5.0, Intel ICC 10.0, Microsoft Visual C/C++ 9.0, Compaq (ex-DEC) 6.4, and TinyCC compilers don't recognize the initializers as constant expressions. The Compaq compiler also fails when constant-folding 0.0 / 0.0 even when constant-folding is not required. The Microsoft Visual C/C++ compiler also fails when constant-folding 1.0 / 0.0 even when constant-folding is not required. The SGI MIPSpro C compiler complains about "floating-point operation result is out of range". */ static DOUBLE zero = L_(0.0); memory_double nan; DOUBLE plus_inf = L_(1.0) / zero; DOUBLE minus_inf = -L_(1.0) / zero; nan.value = zero / zero; # else static memory_double nan = { L_(0.0) / L_(0.0) }; static DOUBLE plus_inf = L_(1.0) / L_(0.0); static DOUBLE minus_inf = -L_(1.0) / L_(0.0); # endif { memory_double m; /* A NaN can be recognized through its exponent. But exclude +Infinity and -Infinity, which have the same exponent. */ m.value = x; if (((m.word[EXPBIT0_WORD] ^ nan.word[EXPBIT0_WORD]) & (EXP_MASK << EXPBIT0_BIT)) == 0) return (memcmp (&m.value, &plus_inf, SIZE) != 0 && memcmp (&m.value, &minus_inf, SIZE) != 0); else return 0; } # endif #else /* The configuration did not find sufficient information. Give up about the signaling NaNs, handle only the quiet NaNs. */ if (x == x) { # if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE /* Detect any special bit patterns that pass ==; see comment above. */ memory_double m1; memory_double m2; memset (&m1.value, 0, SIZE); memset (&m2.value, 0, SIZE); m1.value = x; m2.value = x + (x ? 0.0L : -0.0L); if (memcmp (&m1.value, &m2.value, SIZE) != 0) return 1; # endif return 0; } else return 1; #endif }