blob: b3df0e3fde89187fb72b5348bc5a6270cdaa2e43 (
about) (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
;;; calc-mtx.el --- matrix functions for Calc
;; Copyright (C) 1990-1993, 2001-2013 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
;; This file is autoloaded from calc-ext.el.
(require 'calc-ext)
(require 'calc-macs)
(defun calc-mdet (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "mdet" 'calcFunc-det arg)))
(defun calc-mtrace (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "mtr" 'calcFunc-tr arg)))
(defun calc-mlud (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "mlud" 'calcFunc-lud arg)))
;;; Coerce row vector A to be a matrix. [V V]
(defun math-row-matrix (a)
(if (and (Math-vectorp a)
(not (math-matrixp a)))
(list 'vec a)
a))
;;; Coerce column vector A to be a matrix. [V V]
(defun math-col-matrix (a)
(if (and (Math-vectorp a)
(not (math-matrixp a)))
(cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a)))
a))
;;; Multiply matrices A and B. [V V V]
(defun math-mul-mats (a b)
(let ((mat nil)
(cols (length (nth 1 b)))
row col ap bp accum)
(while (setq a (cdr a))
(setq col cols
row nil)
(while (> (setq col (1- col)) 0)
(setq ap (cdr (car a))
bp (cdr b)
accum (math-mul (car ap) (nth col (car bp))))
(while (setq ap (cdr ap) bp (cdr bp))
(setq accum (math-add accum (math-mul (car ap) (nth col (car bp))))))
(setq row (cons accum row)))
(setq mat (cons (cons 'vec row) mat)))
(cons 'vec (nreverse mat))))
(defun math-mul-mat-vec (a b)
(cons 'vec (mapcar (function (lambda (row)
(math-dot-product row b)))
(cdr a))))
(defun calcFunc-tr (mat) ; [Public]
(if (math-square-matrixp mat)
(math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat)))
(math-reject-arg mat 'square-matrixp)))
(defun math-matrix-trace-step (n size mat sum)
(if (<= n size)
(math-matrix-trace-step (1+ n) size mat
(math-add sum (nth n (nth n mat))))
sum))
;;; Matrix inverse and determinant.
(defun math-matrix-inv-raw (m)
(let ((n (1- (length m))))
(if (<= n 3)
(let ((det (math-det-raw m)))
(and (not (math-zerop det))
(math-div
(cond ((= n 1) 1)
((= n 2)
(list 'vec
(list 'vec
(nth 2 (nth 2 m))
(math-neg (nth 2 (nth 1 m))))
(list 'vec
(math-neg (nth 1 (nth 2 m)))
(nth 1 (nth 1 m)))))
((= n 3)
(list 'vec
(list 'vec
(math-sub (math-mul (nth 3 (nth 3 m))
(nth 2 (nth 2 m)))
(math-mul (nth 3 (nth 2 m))
(nth 2 (nth 3 m))))
(math-sub (math-mul (nth 3 (nth 1 m))
(nth 2 (nth 3 m)))
(math-mul (nth 3 (nth 3 m))
(nth 2 (nth 1 m))))
(math-sub (math-mul (nth 3 (nth 2 m))
(nth 2 (nth 1 m)))
(math-mul (nth 3 (nth 1 m))
(nth 2 (nth 2 m)))))
(list 'vec
(math-sub (math-mul (nth 3 (nth 2 m))
(nth 1 (nth 3 m)))
(math-mul (nth 3 (nth 3 m))
(nth 1 (nth 2 m))))
(math-sub (math-mul (nth 3 (nth 3 m))
(nth 1 (nth 1 m)))
(math-mul (nth 3 (nth 1 m))
(nth 1 (nth 3 m))))
(math-sub (math-mul (nth 3 (nth 1 m))
(nth 1 (nth 2 m)))
(math-mul (nth 3 (nth 2 m))
(nth 1 (nth 1 m)))))
(list 'vec
(math-sub (math-mul (nth 2 (nth 3 m))
(nth 1 (nth 2 m)))
(math-mul (nth 2 (nth 2 m))
(nth 1 (nth 3 m))))
(math-sub (math-mul (nth 2 (nth 1 m))
(nth 1 (nth 3 m)))
(math-mul (nth 2 (nth 3 m))
(nth 1 (nth 1 m))))
(math-sub (math-mul (nth 2 (nth 2 m))
(nth 1 (nth 1 m)))
(math-mul (nth 2 (nth 1 m))
(nth 1 (nth 2 m))))))))
det)))
(let ((lud (math-matrix-lud m)))
(and lud
(math-lud-solve lud (calcFunc-idn 1 n)))))))
(defun calcFunc-det (m)
(if (math-square-matrixp m)
(math-with-extra-prec 2 (math-det-raw m))
(if (and (eq (car-safe m) 'calcFunc-idn)
(or (math-zerop (nth 1 m))
(math-equal-int (nth 1 m) 1)))
(nth 1 m)
(math-reject-arg m 'square-matrixp))))
;; The variable math-det-lu is local to math-det-raw, but is
;; used by math-det-step, which is called by math-det-raw.
(defvar math-det-lu)
(defun math-det-raw (m)
(let ((n (1- (length m))))
(cond ((= n 1)
(nth 1 (nth 1 m)))
((= n 2)
(math-sub (math-mul (nth 1 (nth 1 m))
(nth 2 (nth 2 m)))
(math-mul (nth 2 (nth 1 m))
(nth 1 (nth 2 m)))))
((= n 3)
(math-sub
(math-sub
(math-sub
(math-add
(math-add
(math-mul (nth 1 (nth 1 m))
(math-mul (nth 2 (nth 2 m))
(nth 3 (nth 3 m))))
(math-mul (nth 2 (nth 1 m))
(math-mul (nth 3 (nth 2 m))
(nth 1 (nth 3 m)))))
(math-mul (nth 3 (nth 1 m))
(math-mul (nth 1 (nth 2 m))
(nth 2 (nth 3 m)))))
(math-mul (nth 3 (nth 1 m))
(math-mul (nth 2 (nth 2 m))
(nth 1 (nth 3 m)))))
(math-mul (nth 1 (nth 1 m))
(math-mul (nth 3 (nth 2 m))
(nth 2 (nth 3 m)))))
(math-mul (nth 2 (nth 1 m))
(math-mul (nth 1 (nth 2 m))
(nth 3 (nth 3 m))))))
(t (let ((lud (math-matrix-lud m)))
(if lud
(let ((math-det-lu (car lud)))
(math-det-step n (nth 2 lud)))
0))))))
(defun math-det-step (n prod)
(if (> n 0)
(math-det-step (1- n) (math-mul prod (nth n (nth n math-det-lu))))
prod))
;;; This returns a list (LU index d), or nil if not possible.
;;; Argument M must be a square matrix.
(defvar math-lud-cache nil)
(defun math-matrix-lud (m)
(let ((old (assoc m math-lud-cache))
(context (list calc-internal-prec calc-prefer-frac)))
(if (and old (equal (nth 1 old) context))
(cdr (cdr old))
(let* ((lud (catch 'singular (math-do-matrix-lud m)))
(entry (cons context lud)))
(if old
(setcdr old entry)
(setq math-lud-cache (cons (cons m entry) math-lud-cache)))
lud))))
(defun math-lud-pivot-check (a)
"Determine a useful value for checking the size of potential pivots
in LUD decomposition."
(cond ((eq (car-safe a) 'mod)
(if (and (math-integerp (nth 1 a))
(math-integerp (nth 2 a))
(eq (math-gcd (nth 1 a) (nth 2 a)) 1))
1
0))
(t
(math-abs-approx a))))
;;; Numerical Recipes section 2.3; implicit pivoting omitted.
(defun math-do-matrix-lud (m)
(let* ((lu (math-copy-matrix m))
(n (1- (length lu)))
i (j 1) k imax sum big
(d 1) (index nil))
(while (<= j n)
(setq i 1
big 0
imax j)
(while (< i j)
(math-working "LUD step" (format "%d/%d" j i))
(setq sum (nth j (nth i lu))
k 1)
(while (< k i)
(setq sum (math-sub sum (math-mul (nth k (nth i lu))
(nth j (nth k lu))))
k (1+ k)))
(setcar (nthcdr j (nth i lu)) sum)
(setq i (1+ i)))
(while (<= i n)
(math-working "LUD step" (format "%d/%d" j i))
(setq sum (nth j (nth i lu))
k 1)
(while (< k j)
(setq sum (math-sub sum (math-mul (nth k (nth i lu))
(nth j (nth k lu))))
k (1+ k)))
(setcar (nthcdr j (nth i lu)) sum)
(let ((dum (math-lud-pivot-check sum)))
(if (Math-lessp big dum)
(setq big dum
imax i)))
(setq i (1+ i)))
(if (> imax j)
(setq lu (math-swap-rows lu j imax)
d (- d)))
(setq index (cons imax index))
(let ((pivot (nth j (nth j lu))))
(if (math-zerop pivot)
(throw 'singular nil)
(setq i j)
(while (<= (setq i (1+ i)) n)
(setcar (nthcdr j (nth i lu))
(math-div (nth j (nth i lu)) pivot)))))
(setq j (1+ j)))
(list lu (nreverse index) d)))
(defun math-swap-rows (m r1 r2)
(or (= r1 r2)
(let* ((r1prev (nthcdr (1- r1) m))
(row1 (cdr r1prev))
(r2prev (nthcdr (1- r2) m))
(row2 (cdr r2prev))
(r2next (cdr row2)))
(setcdr r2prev row1)
(setcdr r1prev row2)
(setcdr row2 (cdr row1))
(setcdr row1 r2next)))
m)
(defun math-lud-solve (lud b &optional need)
(if lud
(let* ((x (math-copy-matrix b))
(n (1- (length x)))
(m (1- (length (nth 1 x))))
(lu (car lud))
(col 1)
i j ip ii index sum)
(while (<= col m)
(math-working "LUD solver step" col)
(setq i 1
ii nil
index (nth 1 lud))
(while (<= i n)
(setq ip (car index)
index (cdr index)
sum (nth col (nth ip x)))
(setcar (nthcdr col (nth ip x)) (nth col (nth i x)))
(if (null ii)
(or (math-zerop sum)
(setq ii i))
(setq j ii)
(while (< j i)
(setq sum (math-sub sum (math-mul (nth j (nth i lu))
(nth col (nth j x))))
j (1+ j))))
(setcar (nthcdr col (nth i x)) sum)
(setq i (1+ i)))
(while (>= (setq i (1- i)) 1)
(setq sum (nth col (nth i x))
j i)
(while (<= (setq j (1+ j)) n)
(setq sum (math-sub sum (math-mul (nth j (nth i lu))
(nth col (nth j x))))))
(setcar (nthcdr col (nth i x))
(math-div sum (nth i (nth i lu)))))
(setq col (1+ col)))
x)
(and need
(math-reject-arg need "*Singular matrix"))))
(defun calcFunc-lud (m)
(if (math-square-matrixp m)
(or (math-with-extra-prec 2
(let ((lud (math-matrix-lud m)))
(and lud
(let* ((lmat (math-copy-matrix (car lud)))
(umat (math-copy-matrix (car lud)))
(n (1- (length (car lud))))
(perm (calcFunc-idn 1 n))
i (j 1))
(while (<= j n)
(setq i 1)
(while (< i j)
(setcar (nthcdr j (nth i lmat)) 0)
(setq i (1+ i)))
(setcar (nthcdr j (nth j lmat)) 1)
(while (<= (setq i (1+ i)) n)
(setcar (nthcdr j (nth i umat)) 0))
(setq j (1+ j)))
(while (>= (setq j (1- j)) 1)
(let ((pos (nth (1- j) (nth 1 lud))))
(or (= pos j)
(setq perm (math-swap-rows perm j pos)))))
(list 'vec perm lmat umat)))))
(math-reject-arg m "*Singular matrix"))
(math-reject-arg m 'square-matrixp)))
(provide 'calc-mtx)
;;; calc-mtx.el ends here
|