summaryrefslogtreecommitdiff
path: root/lispref/numbers.texi
diff options
context:
space:
mode:
Diffstat (limited to 'lispref/numbers.texi')
-rw-r--r--lispref/numbers.texi1211
1 files changed, 0 insertions, 1211 deletions
diff --git a/lispref/numbers.texi b/lispref/numbers.texi
deleted file mode 100644
index 4d7f3e7578..0000000000
--- a/lispref/numbers.texi
+++ /dev/null
@@ -1,1211 +0,0 @@
-@c -*-texinfo-*-
-@c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
-@c 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
-@c See the file elisp.texi for copying conditions.
-@setfilename ../info/numbers
-@node Numbers, Strings and Characters, Lisp Data Types, Top
-@chapter Numbers
-@cindex integers
-@cindex numbers
-
- GNU Emacs supports two numeric data types: @dfn{integers} and
-@dfn{floating point numbers}. Integers are whole numbers such as
-@minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
-numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
-2.71828. They can also be expressed in exponential notation: 1.5e2
-equals 150; in this example, @samp{e2} stands for ten to the second
-power, and that is multiplied by 1.5. Floating point values are not
-exact; they have a fixed, limited amount of precision.
-
-@menu
-* Integer Basics:: Representation and range of integers.
-* Float Basics:: Representation and range of floating point.
-* Predicates on Numbers:: Testing for numbers.
-* Comparison of Numbers:: Equality and inequality predicates.
-* Numeric Conversions:: Converting float to integer and vice versa.
-* Arithmetic Operations:: How to add, subtract, multiply and divide.
-* Rounding Operations:: Explicitly rounding floating point numbers.
-* Bitwise Operations:: Logical and, or, not, shifting.
-* Math Functions:: Trig, exponential and logarithmic functions.
-* Random Numbers:: Obtaining random integers, predictable or not.
-@end menu
-
-@node Integer Basics
-@comment node-name, next, previous, up
-@section Integer Basics
-
- The range of values for an integer depends on the machine. The
-minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
-@ifnottex
--2**28
-@end ifnottex
-@tex
-@math{-2^{28}}
-@end tex
-to
-@ifnottex
-2**28 - 1),
-@end ifnottex
-@tex
-@math{2^{28}-1}),
-@end tex
-but some machines may provide a wider range. Many examples in this
-chapter assume an integer has 29 bits.
-@cindex overflow
-
- The Lisp reader reads an integer as a sequence of digits with optional
-initial sign and optional final period.
-
-@example
- 1 ; @r{The integer 1.}
- 1. ; @r{The integer 1.}
-+1 ; @r{Also the integer 1.}
--1 ; @r{The integer @minus{}1.}
- 536870913 ; @r{Also the integer 1, due to overflow.}
- 0 ; @r{The integer 0.}
--0 ; @r{The integer 0.}
-@end example
-
-@cindex integers in specific radix
-@cindex radix for reading an integer
-@cindex base for reading an integer
-@cindex hex numbers
-@cindex octal numbers
-@cindex reading numbers in hex, octal, and binary
- The syntax for integers in bases other than 10 uses @samp{#}
-followed by a letter that specifies the radix: @samp{b} for binary,
-@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
-specify radix @var{radix}. Case is not significant for the letter
-that specifies the radix. Thus, @samp{#b@var{integer}} reads
-@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
-@var{integer} in radix @var{radix}. Allowed values of @var{radix} run
-from 2 to 36. For example:
-
-@example
-#b101100 @result{} 44
-#o54 @result{} 44
-#x2c @result{} 44
-#24r1k @result{} 44
-@end example
-
- To understand how various functions work on integers, especially the
-bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
-view the numbers in their binary form.
-
- In 29-bit binary, the decimal integer 5 looks like this:
-
-@example
-0 0000 0000 0000 0000 0000 0000 0101
-@end example
-
-@noindent
-(We have inserted spaces between groups of 4 bits, and two spaces
-between groups of 8 bits, to make the binary integer easier to read.)
-
- The integer @minus{}1 looks like this:
-
-@example
-1 1111 1111 1111 1111 1111 1111 1111
-@end example
-
-@noindent
-@cindex two's complement
-@minus{}1 is represented as 29 ones. (This is called @dfn{two's
-complement} notation.)
-
- The negative integer, @minus{}5, is creating by subtracting 4 from
-@minus{}1. In binary, the decimal integer 4 is 100. Consequently,
-@minus{}5 looks like this:
-
-@example
-1 1111 1111 1111 1111 1111 1111 1011
-@end example
-
- In this implementation, the largest 29-bit binary integer value is
-268,435,455 in decimal. In binary, it looks like this:
-
-@example
-0 1111 1111 1111 1111 1111 1111 1111
-@end example
-
- Since the arithmetic functions do not check whether integers go
-outside their range, when you add 1 to 268,435,455, the value is the
-negative integer @minus{}268,435,456:
-
-@example
-(+ 1 268435455)
- @result{} -268435456
- @result{} 1 0000 0000 0000 0000 0000 0000 0000
-@end example
-
- Many of the functions described in this chapter accept markers for
-arguments in place of numbers. (@xref{Markers}.) Since the actual
-arguments to such functions may be either numbers or markers, we often
-give these arguments the name @var{number-or-marker}. When the argument
-value is a marker, its position value is used and its buffer is ignored.
-
-@defvar most-positive-fixnum
-The value of this variable is the largest integer that Emacs Lisp
-can handle.
-@end defvar
-
-@defvar most-negative-fixnum
-The value of this variable is the smallest integer that Emacs Lisp can
-handle. It is negative.
-@end defvar
-
-@node Float Basics
-@section Floating Point Basics
-
- Floating point numbers are useful for representing numbers that are
-not integral. The precise range of floating point numbers is
-machine-specific; it is the same as the range of the C data type
-@code{double} on the machine you are using.
-
- The read-syntax for floating point numbers requires either a decimal
-point (with at least one digit following), an exponent, or both. For
-example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
-@samp{.15e4} are five ways of writing a floating point number whose
-value is 1500. They are all equivalent. You can also use a minus sign
-to write negative floating point numbers, as in @samp{-1.0}.
-
-@cindex @acronym{IEEE} floating point
-@cindex positive infinity
-@cindex negative infinity
-@cindex infinity
-@cindex NaN
- Most modern computers support the @acronym{IEEE} floating point standard,
-which provides for positive infinity and negative infinity as floating point
-values. It also provides for a class of values called NaN or
-``not-a-number''; numerical functions return such values in cases where
-there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a
-NaN. For practical purposes, there's no significant difference between
-different NaN values in Emacs Lisp, and there's no rule for precisely
-which NaN value should be used in a particular case, so Emacs Lisp
-doesn't try to distinguish them (but it does report the sign, if you
-print it). Here are the read syntaxes for these special floating
-point values:
-
-@table @asis
-@item positive infinity
-@samp{1.0e+INF}
-@item negative infinity
-@samp{-1.0e+INF}
-@item Not-a-number
-@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
-@end table
-
- To test whether a floating point value is a NaN, compare it with
-itself using @code{=}. That returns @code{nil} for a NaN, and
-@code{t} for any other floating point value.
-
- The value @code{-0.0} is distinguishable from ordinary zero in
-@acronym{IEEE} floating point, but Emacs Lisp @code{equal} and
-@code{=} consider them equal values.
-
- You can use @code{logb} to extract the binary exponent of a floating
-point number (or estimate the logarithm of an integer):
-
-@defun logb number
-This function returns the binary exponent of @var{number}. More
-precisely, the value is the logarithm of @var{number} base 2, rounded
-down to an integer.
-
-@example
-(logb 10)
- @result{} 3
-(logb 10.0e20)
- @result{} 69
-@end example
-@end defun
-
-@node Predicates on Numbers
-@section Type Predicates for Numbers
-@cindex predicates for numbers
-
- The functions in this section test for numbers, or for a specific
-type of number. The functions @code{integerp} and @code{floatp} can
-take any type of Lisp object as argument (they would not be of much
-use otherwise), but the @code{zerop} predicate requires a number as
-its argument. See also @code{integer-or-marker-p} and
-@code{number-or-marker-p}, in @ref{Predicates on Markers}.
-
-@defun floatp object
-This predicate tests whether its argument is a floating point
-number and returns @code{t} if so, @code{nil} otherwise.
-
-@code{floatp} does not exist in Emacs versions 18 and earlier.
-@end defun
-
-@defun integerp object
-This predicate tests whether its argument is an integer, and returns
-@code{t} if so, @code{nil} otherwise.
-@end defun
-
-@defun numberp object
-This predicate tests whether its argument is a number (either integer or
-floating point), and returns @code{t} if so, @code{nil} otherwise.
-@end defun
-
-@defun wholenump object
-@cindex natural numbers
-The @code{wholenump} predicate (whose name comes from the phrase
-``whole-number-p'') tests to see whether its argument is a nonnegative
-integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
-considered non-negative.
-
-@findex natnump
-@code{natnump} is an obsolete synonym for @code{wholenump}.
-@end defun
-
-@defun zerop number
-This predicate tests whether its argument is zero, and returns @code{t}
-if so, @code{nil} otherwise. The argument must be a number.
-
-@code{(zerop x)} is equivalent to @code{(= x 0)}.
-@end defun
-
-@node Comparison of Numbers
-@section Comparison of Numbers
-@cindex number comparison
-@cindex comparing numbers
-
- To test numbers for numerical equality, you should normally use
-@code{=}, not @code{eq}. There can be many distinct floating point
-number objects with the same numeric value. If you use @code{eq} to
-compare them, then you test whether two values are the same
-@emph{object}. By contrast, @code{=} compares only the numeric values
-of the objects.
-
- At present, each integer value has a unique Lisp object in Emacs Lisp.
-Therefore, @code{eq} is equivalent to @code{=} where integers are
-concerned. It is sometimes convenient to use @code{eq} for comparing an
-unknown value with an integer, because @code{eq} does not report an
-error if the unknown value is not a number---it accepts arguments of any
-type. By contrast, @code{=} signals an error if the arguments are not
-numbers or markers. However, it is a good idea to use @code{=} if you
-can, even for comparing integers, just in case we change the
-representation of integers in a future Emacs version.
-
- Sometimes it is useful to compare numbers with @code{equal}; it
-treats two numbers as equal if they have the same data type (both
-integers, or both floating point) and the same value. By contrast,
-@code{=} can treat an integer and a floating point number as equal.
-@xref{Equality Predicates}.
-
- There is another wrinkle: because floating point arithmetic is not
-exact, it is often a bad idea to check for equality of two floating
-point values. Usually it is better to test for approximate equality.
-Here's a function to do this:
-
-@example
-(defvar fuzz-factor 1.0e-6)
-(defun approx-equal (x y)
- (or (and (= x 0) (= y 0))
- (< (/ (abs (- x y))
- (max (abs x) (abs y)))
- fuzz-factor)))
-@end example
-
-@cindex CL note---integers vrs @code{eq}
-@quotation
-@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
-@code{=} because Common Lisp implements multi-word integers, and two
-distinct integer objects can have the same numeric value. Emacs Lisp
-can have just one integer object for any given value because it has a
-limited range of integer values.
-@end quotation
-
-@defun = number-or-marker1 number-or-marker2
-This function tests whether its arguments are numerically equal, and
-returns @code{t} if so, @code{nil} otherwise.
-@end defun
-
-@defun eql value1 value2
-This function acts like @code{eq} except when both arguments are
-numbers. It compares numbers by type and numeric value, so that
-@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
-@code{(eql 1 1)} both return @code{t}.
-@end defun
-
-@defun /= number-or-marker1 number-or-marker2
-This function tests whether its arguments are numerically equal, and
-returns @code{t} if they are not, and @code{nil} if they are.
-@end defun
-
-@defun < number-or-marker1 number-or-marker2
-This function tests whether its first argument is strictly less than
-its second argument. It returns @code{t} if so, @code{nil} otherwise.
-@end defun
-
-@defun <= number-or-marker1 number-or-marker2
-This function tests whether its first argument is less than or equal
-to its second argument. It returns @code{t} if so, @code{nil}
-otherwise.
-@end defun
-
-@defun > number-or-marker1 number-or-marker2
-This function tests whether its first argument is strictly greater
-than its second argument. It returns @code{t} if so, @code{nil}
-otherwise.
-@end defun
-
-@defun >= number-or-marker1 number-or-marker2
-This function tests whether its first argument is greater than or
-equal to its second argument. It returns @code{t} if so, @code{nil}
-otherwise.
-@end defun
-
-@defun max number-or-marker &rest numbers-or-markers
-This function returns the largest of its arguments.
-If any of the arguments is floating-point, the value is returned
-as floating point, even if it was given as an integer.
-
-@example
-(max 20)
- @result{} 20
-(max 1 2.5)
- @result{} 2.5
-(max 1 3 2.5)
- @result{} 3.0
-@end example
-@end defun
-
-@defun min number-or-marker &rest numbers-or-markers
-This function returns the smallest of its arguments.
-If any of the arguments is floating-point, the value is returned
-as floating point, even if it was given as an integer.
-
-@example
-(min -4 1)
- @result{} -4
-@end example
-@end defun
-
-@defun abs number
-This function returns the absolute value of @var{number}.
-@end defun
-
-@node Numeric Conversions
-@section Numeric Conversions
-@cindex rounding in conversions
-@cindex number conversions
-@cindex converting numbers
-
-To convert an integer to floating point, use the function @code{float}.
-
-@defun float number
-This returns @var{number} converted to floating point.
-If @var{number} is already a floating point number, @code{float} returns
-it unchanged.
-@end defun
-
-There are four functions to convert floating point numbers to integers;
-they differ in how they round. All accept an argument @var{number}
-and an optional argument @var{divisor}. Both arguments may be
-integers or floating point numbers. @var{divisor} may also be
-@code{nil}. If @var{divisor} is @code{nil} or omitted, these
-functions convert @var{number} to an integer, or return it unchanged
-if it already is an integer. If @var{divisor} is non-@code{nil}, they
-divide @var{number} by @var{divisor} and convert the result to an
-integer. An @code{arith-error} results if @var{divisor} is 0.
-
-@defun truncate number &optional divisor
-This returns @var{number}, converted to an integer by rounding towards
-zero.
-
-@example
-(truncate 1.2)
- @result{} 1
-(truncate 1.7)
- @result{} 1
-(truncate -1.2)
- @result{} -1
-(truncate -1.7)
- @result{} -1
-@end example
-@end defun
-
-@defun floor number &optional divisor
-This returns @var{number}, converted to an integer by rounding downward
-(towards negative infinity).
-
-If @var{divisor} is specified, this uses the kind of division
-operation that corresponds to @code{mod}, rounding downward.
-
-@example
-(floor 1.2)
- @result{} 1
-(floor 1.7)
- @result{} 1
-(floor -1.2)
- @result{} -2
-(floor -1.7)
- @result{} -2
-(floor 5.99 3)
- @result{} 1
-@end example
-@end defun
-
-@defun ceiling number &optional divisor
-This returns @var{number}, converted to an integer by rounding upward
-(towards positive infinity).
-
-@example
-(ceiling 1.2)
- @result{} 2
-(ceiling 1.7)
- @result{} 2
-(ceiling -1.2)
- @result{} -1
-(ceiling -1.7)
- @result{} -1
-@end example
-@end defun
-
-@defun round number &optional divisor
-This returns @var{number}, converted to an integer by rounding towards the
-nearest integer. Rounding a value equidistant between two integers
-may choose the integer closer to zero, or it may prefer an even integer,
-depending on your machine.
-
-@example
-(round 1.2)
- @result{} 1
-(round 1.7)
- @result{} 2
-(round -1.2)
- @result{} -1
-(round -1.7)
- @result{} -2
-@end example
-@end defun
-
-@node Arithmetic Operations
-@section Arithmetic Operations
-@cindex arithmetic operations
-
- Emacs Lisp provides the traditional four arithmetic operations:
-addition, subtraction, multiplication, and division. Remainder and modulus
-functions supplement the division functions. The functions to
-add or subtract 1 are provided because they are traditional in Lisp and
-commonly used.
-
- All of these functions except @code{%} return a floating point value
-if any argument is floating.
-
- It is important to note that in Emacs Lisp, arithmetic functions
-do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
-@minus{}268435456, depending on your hardware.
-
-@defun 1+ number-or-marker
-This function returns @var{number-or-marker} plus 1.
-For example,
-
-@example
-(setq foo 4)
- @result{} 4
-(1+ foo)
- @result{} 5
-@end example
-
-This function is not analogous to the C operator @code{++}---it does not
-increment a variable. It just computes a sum. Thus, if we continue,
-
-@example
-foo
- @result{} 4
-@end example
-
-If you want to increment the variable, you must use @code{setq},
-like this:
-
-@example
-(setq foo (1+ foo))
- @result{} 5
-@end example
-@end defun
-
-@defun 1- number-or-marker
-This function returns @var{number-or-marker} minus 1.
-@end defun
-
-@defun + &rest numbers-or-markers
-This function adds its arguments together. When given no arguments,
-@code{+} returns 0.
-
-@example
-(+)
- @result{} 0
-(+ 1)
- @result{} 1
-(+ 1 2 3 4)
- @result{} 10
-@end example
-@end defun
-
-@defun - &optional number-or-marker &rest more-numbers-or-markers
-The @code{-} function serves two purposes: negation and subtraction.
-When @code{-} has a single argument, the value is the negative of the
-argument. When there are multiple arguments, @code{-} subtracts each of
-the @var{more-numbers-or-markers} from @var{number-or-marker},
-cumulatively. If there are no arguments, the result is 0.
-
-@example
-(- 10 1 2 3 4)
- @result{} 0
-(- 10)
- @result{} -10
-(-)
- @result{} 0
-@end example
-@end defun
-
-@defun * &rest numbers-or-markers
-This function multiplies its arguments together, and returns the
-product. When given no arguments, @code{*} returns 1.
-
-@example
-(*)
- @result{} 1
-(* 1)
- @result{} 1
-(* 1 2 3 4)
- @result{} 24
-@end example
-@end defun
-
-@defun / dividend divisor &rest divisors
-This function divides @var{dividend} by @var{divisor} and returns the
-quotient. If there are additional arguments @var{divisors}, then it
-divides @var{dividend} by each divisor in turn. Each argument may be a
-number or a marker.
-
-If all the arguments are integers, then the result is an integer too.
-This means the result has to be rounded. On most machines, the result
-is rounded towards zero after each division, but some machines may round
-differently with negative arguments. This is because the Lisp function
-@code{/} is implemented using the C division operator, which also
-permits machine-dependent rounding. As a practical matter, all known
-machines round in the standard fashion.
-
-@cindex @code{arith-error} in division
-If you divide an integer by 0, an @code{arith-error} error is signaled.
-(@xref{Errors}.) Floating point division by zero returns either
-infinity or a NaN if your machine supports @acronym{IEEE} floating point;
-otherwise, it signals an @code{arith-error} error.
-
-@example
-@group
-(/ 6 2)
- @result{} 3
-@end group
-(/ 5 2)
- @result{} 2
-(/ 5.0 2)
- @result{} 2.5
-(/ 5 2.0)
- @result{} 2.5
-(/ 5.0 2.0)
- @result{} 2.5
-(/ 25 3 2)
- @result{} 4
-@group
-(/ -17 6)
- @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
-@end group
-@end example
-@end defun
-
-@defun % dividend divisor
-@cindex remainder
-This function returns the integer remainder after division of @var{dividend}
-by @var{divisor}. The arguments must be integers or markers.
-
-For negative arguments, the remainder is in principle machine-dependent
-since the quotient is; but in practice, all known machines behave alike.
-
-An @code{arith-error} results if @var{divisor} is 0.
-
-@example
-(% 9 4)
- @result{} 1
-(% -9 4)
- @result{} -1
-(% 9 -4)
- @result{} 1
-(% -9 -4)
- @result{} -1
-@end example
-
-For any two integers @var{dividend} and @var{divisor},
-
-@example
-@group
-(+ (% @var{dividend} @var{divisor})
- (* (/ @var{dividend} @var{divisor}) @var{divisor}))
-@end group
-@end example
-
-@noindent
-always equals @var{dividend}.
-@end defun
-
-@defun mod dividend divisor
-@cindex modulus
-This function returns the value of @var{dividend} modulo @var{divisor};
-in other words, the remainder after division of @var{dividend}
-by @var{divisor}, but with the same sign as @var{divisor}.
-The arguments must be numbers or markers.
-
-Unlike @code{%}, @code{mod} returns a well-defined result for negative
-arguments. It also permits floating point arguments; it rounds the
-quotient downward (towards minus infinity) to an integer, and uses that
-quotient to compute the remainder.
-
-An @code{arith-error} results if @var{divisor} is 0.
-
-@example
-@group
-(mod 9 4)
- @result{} 1
-@end group
-@group
-(mod -9 4)
- @result{} 3
-@end group
-@group
-(mod 9 -4)
- @result{} -3
-@end group
-@group
-(mod -9 -4)
- @result{} -1
-@end group
-@group
-(mod 5.5 2.5)
- @result{} .5
-@end group
-@end example
-
-For any two numbers @var{dividend} and @var{divisor},
-
-@example
-@group
-(+ (mod @var{dividend} @var{divisor})
- (* (floor @var{dividend} @var{divisor}) @var{divisor}))
-@end group
-@end example
-
-@noindent
-always equals @var{dividend}, subject to rounding error if either
-argument is floating point. For @code{floor}, see @ref{Numeric
-Conversions}.
-@end defun
-
-@node Rounding Operations
-@section Rounding Operations
-@cindex rounding without conversion
-
-The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
-@code{ftruncate} take a floating point argument and return a floating
-point result whose value is a nearby integer. @code{ffloor} returns the
-nearest integer below; @code{fceiling}, the nearest integer above;
-@code{ftruncate}, the nearest integer in the direction towards zero;
-@code{fround}, the nearest integer.
-
-@defun ffloor float
-This function rounds @var{float} to the next lower integral value, and
-returns that value as a floating point number.
-@end defun
-
-@defun fceiling float
-This function rounds @var{float} to the next higher integral value, and
-returns that value as a floating point number.
-@end defun
-
-@defun ftruncate float
-This function rounds @var{float} towards zero to an integral value, and
-returns that value as a floating point number.
-@end defun
-
-@defun fround float
-This function rounds @var{float} to the nearest integral value,
-and returns that value as a floating point number.
-@end defun
-
-@node Bitwise Operations
-@section Bitwise Operations on Integers
-@cindex bitwise arithmetic
-@cindex logical arithmetic
-
- In a computer, an integer is represented as a binary number, a
-sequence of @dfn{bits} (digits which are either zero or one). A bitwise
-operation acts on the individual bits of such a sequence. For example,
-@dfn{shifting} moves the whole sequence left or right one or more places,
-reproducing the same pattern ``moved over.''
-
- The bitwise operations in Emacs Lisp apply only to integers.
-
-@defun lsh integer1 count
-@cindex logical shift
-@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
-bits in @var{integer1} to the left @var{count} places, or to the right
-if @var{count} is negative, bringing zeros into the vacated bits. If
-@var{count} is negative, @code{lsh} shifts zeros into the leftmost
-(most-significant) bit, producing a positive result even if
-@var{integer1} is negative. Contrast this with @code{ash}, below.
-
-Here are two examples of @code{lsh}, shifting a pattern of bits one
-place to the left. We show only the low-order eight bits of the binary
-pattern; the rest are all zero.
-
-@example
-@group
-(lsh 5 1)
- @result{} 10
-;; @r{Decimal 5 becomes decimal 10.}
-00000101 @result{} 00001010
-
-(lsh 7 1)
- @result{} 14
-;; @r{Decimal 7 becomes decimal 14.}
-00000111 @result{} 00001110
-@end group
-@end example
-
-@noindent
-As the examples illustrate, shifting the pattern of bits one place to
-the left produces a number that is twice the value of the previous
-number.
-
-Shifting a pattern of bits two places to the left produces results
-like this (with 8-bit binary numbers):
-
-@example
-@group
-(lsh 3 2)
- @result{} 12
-;; @r{Decimal 3 becomes decimal 12.}
-00000011 @result{} 00001100
-@end group
-@end example
-
-On the other hand, shifting one place to the right looks like this:
-
-@example
-@group
-(lsh 6 -1)
- @result{} 3
-;; @r{Decimal 6 becomes decimal 3.}
-00000110 @result{} 00000011
-@end group
-
-@group
-(lsh 5 -1)
- @result{} 2
-;; @r{Decimal 5 becomes decimal 2.}
-00000101 @result{} 00000010
-@end group
-@end example
-
-@noindent
-As the example illustrates, shifting one place to the right divides the
-value of a positive integer by two, rounding downward.
-
-The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
-not check for overflow, so shifting left can discard significant bits
-and change the sign of the number. For example, left shifting
-268,435,455 produces @minus{}2 on a 29-bit machine:
-
-@example
-(lsh 268435455 1) ; @r{left shift}
- @result{} -2
-@end example
-
-In binary, in the 29-bit implementation, the argument looks like this:
-
-@example
-@group
-;; @r{Decimal 268,435,455}
-0 1111 1111 1111 1111 1111 1111 1111
-@end group
-@end example
-
-@noindent
-which becomes the following when left shifted:
-
-@example
-@group
-;; @r{Decimal @minus{}2}
-1 1111 1111 1111 1111 1111 1111 1110
-@end group
-@end example
-@end defun
-
-@defun ash integer1 count
-@cindex arithmetic shift
-@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
-to the left @var{count} places, or to the right if @var{count}
-is negative.
-
-@code{ash} gives the same results as @code{lsh} except when
-@var{integer1} and @var{count} are both negative. In that case,
-@code{ash} puts ones in the empty bit positions on the left, while
-@code{lsh} puts zeros in those bit positions.
-
-Thus, with @code{ash}, shifting the pattern of bits one place to the right
-looks like this:
-
-@example
-@group
-(ash -6 -1) @result{} -3
-;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
-1 1111 1111 1111 1111 1111 1111 1010
- @result{}
-1 1111 1111 1111 1111 1111 1111 1101
-@end group
-@end example
-
-In contrast, shifting the pattern of bits one place to the right with
-@code{lsh} looks like this:
-
-@example
-@group
-(lsh -6 -1) @result{} 268435453
-;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
-1 1111 1111 1111 1111 1111 1111 1010
- @result{}
-0 1111 1111 1111 1111 1111 1111 1101
-@end group
-@end example
-
-Here are other examples:
-
-@c !!! Check if lined up in smallbook format! XDVI shows problem
-@c with smallbook but not with regular book! --rjc 16mar92
-@smallexample
-@group
- ; @r{ 29-bit binary values}
-
-(lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100}
-@end group
-@group
-(ash 5 2)
- @result{} 20
-(lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
- @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100}
-(ash -5 2)
- @result{} -20
-@end group
-@group
-(lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001}
-@end group
-@group
-(ash 5 -2)
- @result{} 1
-@end group
-@group
-(lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
- @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110}
-@end group
-@group
-(ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
- @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110}
-@end group
-@end smallexample
-@end defun
-
-@defun logand &rest ints-or-markers
-This function returns the ``logical and'' of the arguments: the
-@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
-set in all the arguments. (``Set'' means that the value of the bit is 1
-rather than 0.)
-
-For example, using 4-bit binary numbers, the ``logical and'' of 13 and
-12 is 12: 1101 combined with 1100 produces 1100.
-In both the binary numbers, the leftmost two bits are set (i.e., they
-are 1's), so the leftmost two bits of the returned value are set.
-However, for the rightmost two bits, each is zero in at least one of
-the arguments, so the rightmost two bits of the returned value are 0's.
-
-@noindent
-Therefore,
-
-@example
-@group
-(logand 13 12)
- @result{} 12
-@end group
-@end example
-
-If @code{logand} is not passed any argument, it returns a value of
-@minus{}1. This number is an identity element for @code{logand}
-because its binary representation consists entirely of ones. If
-@code{logand} is passed just one argument, it returns that argument.
-
-@smallexample
-@group
- ; @r{ 29-bit binary values}
-
-(logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
- @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
-@end group
-
-@group
-(logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
- ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
- @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
-@end group
-
-@group
-(logand)
- @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111}
-@end group
-@end smallexample
-@end defun
-
-@defun logior &rest ints-or-markers
-This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
-is set in the result if, and only if, the @var{n}th bit is set in at least
-one of the arguments. If there are no arguments, the result is zero,
-which is an identity element for this operation. If @code{logior} is
-passed just one argument, it returns that argument.
-
-@smallexample
-@group
- ; @r{ 29-bit binary values}
-
-(logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
-@end group
-
-@group
-(logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
- @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111}
-@end group
-@end smallexample
-@end defun
-
-@defun logxor &rest ints-or-markers
-This function returns the ``exclusive or'' of its arguments: the
-@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
-set in an odd number of the arguments. If there are no arguments, the
-result is 0, which is an identity element for this operation. If
-@code{logxor} is passed just one argument, it returns that argument.
-
-@smallexample
-@group
- ; @r{ 29-bit binary values}
-
-(logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001}
-@end group
-
-@group
-(logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
- @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
-@end group
-@end smallexample
-@end defun
-
-@defun lognot integer
-This function returns the logical complement of its argument: the @var{n}th
-bit is one in the result if, and only if, the @var{n}th bit is zero in
-@var{integer}, and vice-versa.
-
-@example
-(lognot 5)
- @result{} -6
-;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
-;; @r{becomes}
-;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010}
-@end example
-@end defun
-
-@node Math Functions
-@section Standard Mathematical Functions
-@cindex transcendental functions
-@cindex mathematical functions
-@cindex floating-point functions
-
- These mathematical functions allow integers as well as floating point
-numbers as arguments.
-
-@defun sin arg
-@defunx cos arg
-@defunx tan arg
-These are the ordinary trigonometric functions, with argument measured
-in radians.
-@end defun
-
-@defun asin arg
-The value of @code{(asin @var{arg})} is a number between
-@ifnottex
-@minus{}pi/2
-@end ifnottex
-@tex
-@math{-\pi/2}
-@end tex
-and
-@ifnottex
-pi/2
-@end ifnottex
-@tex
-@math{\pi/2}
-@end tex
-(inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
-range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
-@end defun
-
-@defun acos arg
-The value of @code{(acos @var{arg})} is a number between 0 and
-@ifnottex
-pi
-@end ifnottex
-@tex
-@math{\pi}
-@end tex
-(inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
-of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
-@end defun
-
-@defun atan y &optional x
-The value of @code{(atan @var{y})} is a number between
-@ifnottex
-@minus{}pi/2
-@end ifnottex
-@tex
-@math{-\pi/2}
-@end tex
-and
-@ifnottex
-pi/2
-@end ifnottex
-@tex
-@math{\pi/2}
-@end tex
-(exclusive) whose tangent is @var{y}. If the optional second
-argument @var{x} is given, the value of @code{(atan y x)} is the
-angle in radians between the vector @code{[@var{x}, @var{y}]} and the
-@code{X} axis.
-@end defun
-
-@defun exp arg
-This is the exponential function; it returns
-@tex
-@math{e}
-@end tex
-@ifnottex
-@i{e}
-@end ifnottex
-to the power @var{arg}.
-@tex
-@math{e}
-@end tex
-@ifnottex
-@i{e}
-@end ifnottex
-is a fundamental mathematical constant also called the base of natural
-logarithms.
-@end defun
-
-@defun log arg &optional base
-This function returns the logarithm of @var{arg}, with base @var{base}.
-If you don't specify @var{base}, the base
-@tex
-@math{e}
-@end tex
-@ifnottex
-@i{e}
-@end ifnottex
-is used. If @var{arg} is negative, it signals a @code{domain-error}
-error.
-@end defun
-
-@ignore
-@defun expm1 arg
-This function returns @code{(1- (exp @var{arg}))}, but it is more
-accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
-is close to 1.
-@end defun
-
-@defun log1p arg
-This function returns @code{(log (1+ @var{arg}))}, but it is more
-accurate than that when @var{arg} is so small that adding 1 to it would
-lose accuracy.
-@end defun
-@end ignore
-
-@defun log10 arg
-This function returns the logarithm of @var{arg}, with base 10. If
-@var{arg} is negative, it signals a @code{domain-error} error.
-@code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
-approximately.
-@end defun
-
-@defun expt x y
-This function returns @var{x} raised to power @var{y}. If both
-arguments are integers and @var{y} is positive, the result is an
-integer; in this case, overflow causes truncation, so watch out.
-@end defun
-
-@defun sqrt arg
-This returns the square root of @var{arg}. If @var{arg} is negative,
-it signals a @code{domain-error} error.
-@end defun
-
-@node Random Numbers
-@section Random Numbers
-@cindex random numbers
-
-A deterministic computer program cannot generate true random numbers.
-For most purposes, @dfn{pseudo-random numbers} suffice. A series of
-pseudo-random numbers is generated in a deterministic fashion. The
-numbers are not truly random, but they have certain properties that
-mimic a random series. For example, all possible values occur equally
-often in a pseudo-random series.
-
-In Emacs, pseudo-random numbers are generated from a ``seed'' number.
-Starting from any given seed, the @code{random} function always
-generates the same sequence of numbers. Emacs always starts with the
-same seed value, so the sequence of values of @code{random} is actually
-the same in each Emacs run! For example, in one operating system, the
-first call to @code{(random)} after you start Emacs always returns
-@minus{}1457731, and the second one always returns @minus{}7692030. This
-repeatability is helpful for debugging.
-
-If you want random numbers that don't always come out the same, execute
-@code{(random t)}. This chooses a new seed based on the current time of
-day and on Emacs's process @acronym{ID} number.
-
-@defun random &optional limit
-This function returns a pseudo-random integer. Repeated calls return a
-series of pseudo-random integers.
-
-If @var{limit} is a positive integer, the value is chosen to be
-nonnegative and less than @var{limit}.
-
-If @var{limit} is @code{t}, it means to choose a new seed based on the
-current time of day and on Emacs's process @acronym{ID} number.
-@c "Emacs'" is incorrect usage!
-
-On some machines, any integer representable in Lisp may be the result
-of @code{random}. On other machines, the result can never be larger
-than a certain maximum or less than a certain (negative) minimum.
-@end defun
-
-@ignore
- arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
-@end ignore