summaryrefslogtreecommitdiff
path: root/lib/mktime.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/mktime.c')
-rw-r--r--lib/mktime.c432
1 files changed, 218 insertions, 214 deletions
diff --git a/lib/mktime.c b/lib/mktime.c
index c68ad9ba26..952c82983b 100644
--- a/lib/mktime.c
+++ b/lib/mktime.c
@@ -1,21 +1,21 @@
-/* Convert a `struct tm' to a time_t value.
- Copyright (C) 1993-1999, 2002-2007, 2009-2011 Free Software Foundation, Inc.
+/* Convert a 'struct tm' to a time_t value.
+ Copyright (C) 1993-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Paul Eggert <eggert@twinsun.com>.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public
+ License as published by the Free Software Foundation; either
+ version 3 of the License, or (at your option) any later version.
- This program is distributed in the hope that it will be useful,
+ The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
- You should have received a copy of the GNU General Public License along
- with this program; if not, write to the Free Software Foundation,
- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+ You should have received a copy of the GNU General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
/* Define this to have a standalone program to test this implementation of
mktime. */
@@ -25,26 +25,8 @@
# include <config.h>
#endif
-/* Some of the code in this file assumes that signed integer overflow
- silently wraps around. This assumption can't easily be programmed
- around, nor can it be checked for portably at compile-time or
- easily eliminated at run-time.
-
- Define WRAPV to 1 if the assumption is valid. Otherwise, define it
- to 0; this forces the use of slower code that, while not guaranteed
- by the C Standard, works on all production platforms that we know
- about. */
-#ifndef WRAPV
-# if (__GNUC__ == 4 && 4 <= __GNUC_MINOR__) || 4 < __GNUC__
-# pragma GCC optimize ("wrapv")
-# define WRAPV 1
-# else
-# define WRAPV 0
-# endif
-#endif
-
/* Assume that leap seconds are possible, unless told otherwise.
- If the host has a `zic' command with a `-L leapsecondfilename' option,
+ If the host has a 'zic' command with a '-L leapsecondfilename' option,
then it supports leap seconds; otherwise it probably doesn't. */
#ifndef LEAP_SECONDS_POSSIBLE
# define LEAP_SECONDS_POSSIBLE 1
@@ -54,7 +36,7 @@
#include <limits.h>
-#include <string.h> /* For the real memcpy prototype. */
+#include <string.h> /* For the real memcpy prototype. */
#if DEBUG
# include <stdio.h>
@@ -64,6 +46,28 @@
# define mktime my_mktime
#endif /* DEBUG */
+/* Some of the code in this file assumes that signed integer overflow
+ silently wraps around. This assumption can't easily be programmed
+ around, nor can it be checked for portably at compile-time or
+ easily eliminated at run-time.
+
+ Define WRAPV to 1 if the assumption is valid and if
+ #pragma GCC optimize ("wrapv")
+ does not trigger GCC bug 51793
+ <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=51793>.
+ Otherwise, define it to 0; this forces the use of slower code that,
+ while not guaranteed by the C Standard, works on all production
+ platforms that we know about. */
+#ifndef WRAPV
+# if (((__GNUC__ == 4 && 4 <= __GNUC_MINOR__) || 4 < __GNUC__) \
+ && defined __GLIBC__)
+# pragma GCC optimize ("wrapv")
+# define WRAPV 1
+# else
+# define WRAPV 0
+# endif
+#endif
+
/* Verify a requirement at compile-time (unlike assert, which is runtime). */
#define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; }
@@ -112,12 +116,12 @@ verify (long_int_is_wide_enough, INT_MAX == INT_MAX * (long_int) 2 / 2);
your host. */
#define TYPE_MINIMUM(t) \
((t) (! TYPE_SIGNED (t) \
- ? (t) 0 \
- : ~ TYPE_MAXIMUM (t)))
+ ? (t) 0 \
+ : ~ TYPE_MAXIMUM (t)))
#define TYPE_MAXIMUM(t) \
((t) (! TYPE_SIGNED (t) \
- ? (t) -1 \
- : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
+ ? (t) -1 \
+ : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
#ifndef TIME_T_MIN
# define TIME_T_MIN TYPE_MINIMUM (time_t)
@@ -129,9 +133,9 @@ verify (long_int_is_wide_enough, INT_MAX == INT_MAX * (long_int) 2 / 2);
verify (time_t_is_integer, TYPE_IS_INTEGER (time_t));
verify (twos_complement_arithmetic,
- (TYPE_TWOS_COMPLEMENT (int)
- && TYPE_TWOS_COMPLEMENT (long_int)
- && TYPE_TWOS_COMPLEMENT (time_t)));
+ (TYPE_TWOS_COMPLEMENT (int)
+ && TYPE_TWOS_COMPLEMENT (long_int)
+ && TYPE_TWOS_COMPLEMENT (time_t)));
#define EPOCH_YEAR 1970
#define TM_YEAR_BASE 1900
@@ -146,7 +150,7 @@ leapyear (long_int year)
return
((year & 3) == 0
&& (year % 100 != 0
- || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
+ || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
}
/* How many days come before each month (0-12). */
@@ -178,7 +182,7 @@ const unsigned short int __mon_yday[2][13] =
static int
isdst_differ (int a, int b)
{
- return (!a != !b) & (0 <= a) & (0 <= b);
+ return (!a != !b) && (0 <= a) && (0 <= b);
}
/* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
@@ -194,7 +198,7 @@ isdst_differ (int a, int b)
static inline time_t
ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1,
- int year0, int yday0, int hour0, int min0, int sec0)
+ int year0, int yday0, int hour0, int min0, int sec0)
{
verify (C99_integer_division, -1 / 2 == 0);
@@ -275,15 +279,15 @@ time_t_int_add_ok (time_t a, int b)
yield a value equal to *T. */
static time_t
guess_time_tm (long_int year, long_int yday, int hour, int min, int sec,
- const time_t *t, const struct tm *tp)
+ const time_t *t, const struct tm *tp)
{
if (tp)
{
time_t d = ydhms_diff (year, yday, hour, min, sec,
- tp->tm_year, tp->tm_yday,
- tp->tm_hour, tp->tm_min, tp->tm_sec);
+ tp->tm_year, tp->tm_yday,
+ tp->tm_hour, tp->tm_min, tp->tm_sec);
if (time_t_add_ok (*t, d))
- return *t + d;
+ return *t + d;
}
/* Overflow occurred one way or another. Return the nearest result
@@ -292,8 +296,8 @@ guess_time_tm (long_int year, long_int yday, int hour, int min, int sec,
match; and don't oscillate between two values, as that would
confuse the spring-forward gap detector. */
return (*t < TIME_T_MIDPOINT
- ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
- : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
+ ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
+ : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
}
/* Use CONVERT to convert *T to a broken down time in *TP.
@@ -301,7 +305,7 @@ guess_time_tm (long_int year, long_int yday, int hour, int min, int sec,
it is the nearest in-range value and then convert that. */
static struct tm *
ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
- time_t *t, struct tm *tp)
+ time_t *t, struct tm *tp)
{
struct tm *r = convert (t, tp);
@@ -311,25 +315,25 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
time_t ok = 0;
/* BAD is a known unconvertible time_t, and OK is a known good one.
- Use binary search to narrow the range between BAD and OK until
- they differ by 1. */
+ Use binary search to narrow the range between BAD and OK until
+ they differ by 1. */
while (bad != ok + (bad < 0 ? -1 : 1))
- {
- time_t mid = *t = time_t_avg (ok, bad);
- r = convert (t, tp);
- if (r)
- ok = mid;
- else
- bad = mid;
- }
+ {
+ time_t mid = *t = time_t_avg (ok, bad);
+ r = convert (t, tp);
+ if (r)
+ ok = mid;
+ else
+ bad = mid;
+ }
if (!r && ok)
- {
- /* The last conversion attempt failed;
- revert to the most recent successful attempt. */
- *t = ok;
- r = convert (t, tp);
- }
+ {
+ /* The last conversion attempt failed;
+ revert to the most recent successful attempt. */
+ *t = ok;
+ r = convert (t, tp);
+ }
}
return r;
@@ -344,8 +348,8 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
This function is external because it is used also by timegm.c. */
time_t
__mktime_internal (struct tm *tp,
- struct tm *(*convert) (const time_t *, struct tm *),
- time_t *offset)
+ struct tm *(*convert) (const time_t *, struct tm *),
+ time_t *offset)
{
time_t t, gt, t0, t1, t2;
struct tm tm;
@@ -384,8 +388,8 @@ __mktime_internal (struct tm *tp,
/* Calculate day of year from year, month, and day of month.
The result need not be in range. */
int mon_yday = ((__mon_yday[leapyear (year)]
- [mon_remainder + 12 * negative_mon_remainder])
- - 1);
+ [mon_remainder + 12 * negative_mon_remainder])
+ - 1);
long_int lmday = mday;
long_int yday = mon_yday + lmday;
@@ -396,33 +400,33 @@ __mktime_internal (struct tm *tp,
if (LEAP_SECONDS_POSSIBLE)
{
/* Handle out-of-range seconds specially,
- since ydhms_tm_diff assumes every minute has 60 seconds. */
+ since ydhms_tm_diff assumes every minute has 60 seconds. */
if (sec < 0)
- sec = 0;
+ sec = 0;
if (59 < sec)
- sec = 59;
+ sec = 59;
}
/* Invert CONVERT by probing. First assume the same offset as last
time. */
t0 = ydhms_diff (year, yday, hour, min, sec,
- EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
+ EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3)
{
/* time_t isn't large enough to rule out overflows, so check
- for major overflows. A gross check suffices, since if t0
- has overflowed, it is off by a multiple of TIME_T_MAX -
- TIME_T_MIN + 1. So ignore any component of the difference
- that is bounded by a small value. */
+ for major overflows. A gross check suffices, since if t0
+ has overflowed, it is off by a multiple of TIME_T_MAX -
+ TIME_T_MIN + 1. So ignore any component of the difference
+ that is bounded by a small value. */
/* Approximate log base 2 of the number of time units per
- biennium. A biennium is 2 years; use this unit instead of
- years to avoid integer overflow. For example, 2 average
- Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
- which is 63113904 seconds, and rint (log2 (63113904)) is
- 26. */
+ biennium. A biennium is 2 years; use this unit instead of
+ years to avoid integer overflow. For example, 2 average
+ Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
+ which is 63113904 seconds, and rint (log2 (63113904)) is
+ 26. */
int ALOG2_SECONDS_PER_BIENNIUM = 26;
int ALOG2_MINUTES_PER_BIENNIUM = 20;
int ALOG2_HOURS_PER_BIENNIUM = 14;
@@ -430,64 +434,64 @@ __mktime_internal (struct tm *tp,
int LOG2_YEARS_PER_BIENNIUM = 1;
int approx_requested_biennia =
- (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
- - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
- + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
- + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
- + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
- + (LEAP_SECONDS_POSSIBLE
- ? 0
- : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
+ (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
+ - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
+ + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
+ + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
+ + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
+ + (LEAP_SECONDS_POSSIBLE
+ ? 0
+ : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM);
int diff = approx_biennia - approx_requested_biennia;
- int abs_diff = diff < 0 ? -1 - diff : diff;
+ int approx_abs_diff = diff < 0 ? -1 - diff : diff;
/* IRIX 4.0.5 cc miscalculates TIME_T_MIN / 3: it erroneously
- gives a positive value of 715827882. Setting a variable
- first then doing math on it seems to work.
- (ghazi@caip.rutgers.edu) */
+ gives a positive value of 715827882. Setting a variable
+ first then doing math on it seems to work.
+ (ghazi@caip.rutgers.edu) */
time_t time_t_max = TIME_T_MAX;
time_t time_t_min = TIME_T_MIN;
time_t overflow_threshold =
- (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
-
- if (overflow_threshold < abs_diff)
- {
- /* Overflow occurred. Try repairing it; this might work if
- the time zone offset is enough to undo the overflow. */
- time_t repaired_t0 = -1 - t0;
- approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
- diff = approx_biennia - approx_requested_biennia;
- abs_diff = diff < 0 ? -1 - diff : diff;
- if (overflow_threshold < abs_diff)
- return -1;
- guessed_offset += repaired_t0 - t0;
- t0 = repaired_t0;
- }
+ (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
+
+ if (overflow_threshold < approx_abs_diff)
+ {
+ /* Overflow occurred. Try repairing it; this might work if
+ the time zone offset is enough to undo the overflow. */
+ time_t repaired_t0 = -1 - t0;
+ approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
+ diff = approx_biennia - approx_requested_biennia;
+ approx_abs_diff = diff < 0 ? -1 - diff : diff;
+ if (overflow_threshold < approx_abs_diff)
+ return -1;
+ guessed_offset += repaired_t0 - t0;
+ t0 = repaired_t0;
+ }
}
/* Repeatedly use the error to improve the guess. */
for (t = t1 = t2 = t0, dst2 = 0;
(gt = guess_time_tm (year, yday, hour, min, sec, &t,
- ranged_convert (convert, &t, &tm)),
- t != gt);
+ ranged_convert (convert, &t, &tm)),
+ t != gt);
t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0)
if (t == t1 && t != t2
- && (tm.tm_isdst < 0
- || (isdst < 0
- ? dst2 <= (tm.tm_isdst != 0)
- : (isdst != 0) != (tm.tm_isdst != 0))))
+ && (tm.tm_isdst < 0
+ || (isdst < 0
+ ? dst2 <= (tm.tm_isdst != 0)
+ : (isdst != 0) != (tm.tm_isdst != 0))))
/* We can't possibly find a match, as we are oscillating
- between two values. The requested time probably falls
- within a spring-forward gap of size GT - T. Follow the common
- practice in this case, which is to return a time that is GT - T
- away from the requested time, preferring a time whose
- tm_isdst differs from the requested value. (If no tm_isdst
- was requested and only one of the two values has a nonzero
- tm_isdst, prefer that value.) In practice, this is more
- useful than returning -1. */
+ between two values. The requested time probably falls
+ within a spring-forward gap of size GT - T. Follow the common
+ practice in this case, which is to return a time that is GT - T
+ away from the requested time, preferring a time whose
+ tm_isdst differs from the requested value. (If no tm_isdst
+ was requested and only one of the two values has a nonzero
+ tm_isdst, prefer that value.) In practice, this is more
+ useful than returning -1. */
goto offset_found;
else if (--remaining_probes == 0)
return -1;
@@ -497,50 +501,50 @@ __mktime_internal (struct tm *tp,
if (isdst_differ (isdst, tm.tm_isdst))
{
/* tm.tm_isdst has the wrong value. Look for a neighboring
- time with the right value, and use its UTC offset.
+ time with the right value, and use its UTC offset.
- Heuristic: probe the adjacent timestamps in both directions,
- looking for the desired isdst. This should work for all real
- time zone histories in the tz database. */
+ Heuristic: probe the adjacent timestamps in both directions,
+ looking for the desired isdst. This should work for all real
+ time zone histories in the tz database. */
/* Distance between probes when looking for a DST boundary. In
- tzdata2003a, the shortest period of DST is 601200 seconds
- (e.g., America/Recife starting 2000-10-08 01:00), and the
- shortest period of non-DST surrounded by DST is 694800
- seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
- minimum of these two values, so we don't miss these short
- periods when probing. */
+ tzdata2003a, the shortest period of DST is 601200 seconds
+ (e.g., America/Recife starting 2000-10-08 01:00), and the
+ shortest period of non-DST surrounded by DST is 694800
+ seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
+ minimum of these two values, so we don't miss these short
+ periods when probing. */
int stride = 601200;
/* The longest period of DST in tzdata2003a is 536454000 seconds
- (e.g., America/Jujuy starting 1946-10-01 01:00). The longest
- period of non-DST is much longer, but it makes no real sense
- to search for more than a year of non-DST, so use the DST
- max. */
+ (e.g., America/Jujuy starting 1946-10-01 01:00). The longest
+ period of non-DST is much longer, but it makes no real sense
+ to search for more than a year of non-DST, so use the DST
+ max. */
int duration_max = 536454000;
/* Search in both directions, so the maximum distance is half
- the duration; add the stride to avoid off-by-1 problems. */
+ the duration; add the stride to avoid off-by-1 problems. */
int delta_bound = duration_max / 2 + stride;
int delta, direction;
for (delta = stride; delta < delta_bound; delta += stride)
- for (direction = -1; direction <= 1; direction += 2)
- if (time_t_int_add_ok (t, delta * direction))
- {
- time_t ot = t + delta * direction;
- struct tm otm;
- ranged_convert (convert, &ot, &otm);
- if (! isdst_differ (isdst, otm.tm_isdst))
- {
- /* We found the desired tm_isdst.
- Extrapolate back to the desired time. */
- t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
- ranged_convert (convert, &t, &tm);
- goto offset_found;
- }
- }
+ for (direction = -1; direction <= 1; direction += 2)
+ if (time_t_int_add_ok (t, delta * direction))
+ {
+ time_t ot = t + delta * direction;
+ struct tm otm;
+ ranged_convert (convert, &ot, &otm);
+ if (! isdst_differ (isdst, otm.tm_isdst))
+ {
+ /* We found the desired tm_isdst.
+ Extrapolate back to the desired time. */
+ t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
+ ranged_convert (convert, &t, &tm);
+ goto offset_found;
+ }
+ }
}
offset_found:
@@ -549,16 +553,16 @@ __mktime_internal (struct tm *tp,
if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
{
/* Adjust time to reflect the tm_sec requested, not the normalized value.
- Also, repair any damage from a false match due to a leap second. */
+ Also, repair any damage from a false match due to a leap second. */
int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec;
if (! time_t_int_add_ok (t, sec_requested))
- return -1;
+ return -1;
t1 = t + sec_requested;
if (! time_t_int_add_ok (t1, sec_adjustment))
- return -1;
+ return -1;
t2 = t1 + sec_adjustment;
if (! convert (&t2, &tm))
- return -1;
+ return -1;
t = t2;
}
@@ -579,7 +583,7 @@ mktime (struct tm *tp)
{
#ifdef _LIBC
/* POSIX.1 8.1.1 requires that whenever mktime() is called, the
- time zone names contained in the external variable `tzname' shall
+ time zone names contained in the external variable 'tzname' shall
be set as if the tzset() function had been called. */
__tzset ();
#endif
@@ -602,13 +606,13 @@ static int
not_equal_tm (const struct tm *a, const struct tm *b)
{
return ((a->tm_sec ^ b->tm_sec)
- | (a->tm_min ^ b->tm_min)
- | (a->tm_hour ^ b->tm_hour)
- | (a->tm_mday ^ b->tm_mday)
- | (a->tm_mon ^ b->tm_mon)
- | (a->tm_year ^ b->tm_year)
- | (a->tm_yday ^ b->tm_yday)
- | isdst_differ (a->tm_isdst, b->tm_isdst));
+ | (a->tm_min ^ b->tm_min)
+ | (a->tm_hour ^ b->tm_hour)
+ | (a->tm_mday ^ b->tm_mday)
+ | (a->tm_mon ^ b->tm_mon)
+ | (a->tm_year ^ b->tm_year)
+ | (a->tm_yday ^ b->tm_yday)
+ | isdst_differ (a->tm_isdst, b->tm_isdst));
}
static void
@@ -616,9 +620,9 @@ print_tm (const struct tm *tp)
{
if (tp)
printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d",
- tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
- tp->tm_hour, tp->tm_min, tp->tm_sec,
- tp->tm_yday, tp->tm_wday, tp->tm_isdst);
+ tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
+ tp->tm_hour, tp->tm_min, tp->tm_sec,
+ tp->tm_yday, tp->tm_wday, tp->tm_isdst);
else
printf ("0");
}
@@ -650,11 +654,11 @@ main (int argc, char **argv)
if ((argc == 3 || argc == 4)
&& (sscanf (argv[1], "%d-%d-%d%c",
- &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
- == 3)
+ &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
+ == 3)
&& (sscanf (argv[2], "%d:%d:%d%c",
- &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
- == 3))
+ &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
+ == 3))
{
tm.tm_year -= TM_YEAR_BASE;
tm.tm_mon--;
@@ -663,10 +667,10 @@ main (int argc, char **argv)
tl = mktime (&tmk);
lt = localtime (&tl);
if (lt)
- {
- tml = *lt;
- lt = &tml;
- }
+ {
+ tml = *lt;
+ lt = &tml;
+ }
printf ("mktime returns %ld == ", (long int) tl);
print_tm (&tmk);
printf ("\n");
@@ -679,51 +683,51 @@ main (int argc, char **argv)
time_t to = atol (argv[3]);
if (argc == 4)
- for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
- {
- lt = localtime (&tl);
- if (lt)
- {
- tmk = tml = *lt;
- tk = mktime (&tmk);
- status |= check_result (tk, tmk, tl, &tml);
- }
- else
- {
- printf ("localtime (%ld) yields 0\n", (long int) tl);
- status = 1;
- }
- tl1 = tl + by;
- if ((tl1 < tl) != (by < 0))
- break;
- }
+ for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
+ {
+ lt = localtime (&tl);
+ if (lt)
+ {
+ tmk = tml = *lt;
+ tk = mktime (&tmk);
+ status |= check_result (tk, tmk, tl, &tml);
+ }
+ else
+ {
+ printf ("localtime (%ld) yields 0\n", (long int) tl);
+ status = 1;
+ }
+ tl1 = tl + by;
+ if ((tl1 < tl) != (by < 0))
+ break;
+ }
else
- for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
- {
- /* Null benchmark. */
- lt = localtime (&tl);
- if (lt)
- {
- tmk = tml = *lt;
- tk = tl;
- status |= check_result (tk, tmk, tl, &tml);
- }
- else
- {
- printf ("localtime (%ld) yields 0\n", (long int) tl);
- status = 1;
- }
- tl1 = tl + by;
- if ((tl1 < tl) != (by < 0))
- break;
- }
+ for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
+ {
+ /* Null benchmark. */
+ lt = localtime (&tl);
+ if (lt)
+ {
+ tmk = tml = *lt;
+ tk = tl;
+ status |= check_result (tk, tmk, tl, &tml);
+ }
+ else
+ {
+ printf ("localtime (%ld) yields 0\n", (long int) tl);
+ status = 1;
+ }
+ tl1 = tl + by;
+ if ((tl1 < tl) != (by < 0))
+ break;
+ }
}
else
printf ("Usage:\
\t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\
\t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\
\t%s FROM BY TO - # Do not test those values (for benchmark).\n",
- argv[0], argv[0], argv[0]);
+ argv[0], argv[0], argv[0]);
return status;
}